
Processos e monitoração Docker.

Bash script to log and restart docker container based on cpu usage
how to get docker stats using shell script
Docker Stats | Understand how to monitor Docker Metrics with docker stats
Monitora containers
Coletar estatísticas Docker com CTOP
15 Scripts to Automate Docker Container Management

Configuração e
Monitoração Docker

Link: https://dev.to/tomasggarcia/bash-script-to-log-and-restart-docker-container-cpu-usage-1j2o

I wrote this post to share with you one job experience that I had to live with recently, one problem I
had and my temporal solution to this problem.
I'm new in this tech world, I will be grateful if any of you have some improvement
recommendations and very pleased if this post it's useful for someone else.
A few mounths ago in my company we discovered that some Docker container was having
problems with CPU usage. Out of nowhere the CPU usage of that container was increasing abruptly.
So while the dev team was searching for the code error, I implemented a temporary solution. I
made one script to log all cpu usage every 5 seconds:

Bash script to log and restart
docker container based on
cpu usage

#!/bin/bash
logs=/var/log/process_name.log
container_name=container_name

while :
do
 # Get a variable with the cpu usage for a specific container
 var=`docker stats --no-stream --format "{{.CPUPerc}}" $container_name`
 length=${#var}

 if (($length==0)); then
 echo "Container ${container_name} does not exist"
 echo "$(date +'%d-%m-%Y %H:%M') | Container $container_name does not exist" >> $logs
 else
 # CPU usage in number
 percent="${var[@]::-4}"

 echo "Actual cpu usage: ${percent}"

 # Save actual CPU usage in file

https://dev.to/tomasggarcia/bash-script-to-log-and-restart-docker-container-cpu-usage-1j2o

After that I created a supervisor config to run this process:

Then I wrote a script to restart the problematic container, based on the logs of the previous script:

 echo "$(date +'%d-%m-%Y %H:%M') | ${percent}" >> $logs
 fi
 sleep 5

[program:process]
command=/opt/scripts/script.sh
autostart=true
autorestart=true
stderr_logfile=/var/log/process.err.log
stdout_logfile=/var/log/process.err.log

#!/bin/bash
container_name=container_name
logs_evaluated_lines=5
logs=/var/log/process_name.log
max_cpu=90

while :
do
 # Lines in file
 num=$(wc -l < $logs)

 counter=0

 # For 'logs_evaluated_lines' lines in logs increase counter if cpu is greater than 100%
 for ((index=$num;index>=$num-$logs_evaluated_lines+1;index--))
 do
 value=$(sed "${index}q;d" $logs)
 percent=$(echo $value | cut -c 20-)
 #echo $percent
 if (($percent >= max_cpu)); then
 # echo 'mayor'
 counter=$((counter+1))
 # else
 # echo 'menor'
 fi
 done

This script evaluate 'logs_evaluated_lines' lines in log and restarts the container if the count is
upper 'max_cpu' variable

 echo "$(date +'%d-%m-%Y %H:%M') | Logs up to 100%: ${counter}"
 echo "$(date +'%d-%m-%Y %H:%M') | Logs lines analyzed: ${logs_evaluated_lines}"
 if (($counter == $logs_evaluated_lines)); then
 echo "$(date +'%d-%m-%Y %H:%M') | CPU Full usage";
 echo "$(date +'%d-%m-%Y %H:%M') | Restarting Container"
 docker restart $container_name
 echo "$(date +'%d-%m-%Y %H:%M') | Container Restarted"
 echo "$(date +'%d-%m-%Y %H:%M') | Container Restarted" >> $logs
 else
 echo "$(date +'%d-%m-%Y %H:%M') | CPU Usage OK"
 fi
 echo "$(date +'%d-%m-%Y %H:%M') |"
 sleep 5
done

Link: https://iqcode.com/code/typescript/how-to-get-docker-stats-using-shell-script

how to get docker stats
using shell script

#!/bin/bash

This script is used to complete the output of the docker stats command.
The docker stats command does not compute the total amount of resources (RAM or CPU)

Get the total amount of RAM, assumes there are at least 1024*1024 KiB, therefore > 1 GiB
HOST_MEM_TOTAL=$(grep MemTotal /proc/meminfo | awk '{print $2/1024/1024}')

Get the output of the docker stat command. Will be displayed at the end
Without modifying the special variable IFS the ouput of the docker stats command won't have
the new lines thus resulting in a failure when using awk to process each line
IFS=;
DOCKER_STATS_CMD=`docker stats --no-stream --format "table
{{.MemPerc}}\t{{.CPUPerc}}\t{{.MemUsage}}\t{{.Name}}"`

SUM_RAM=`echo $DOCKER_STATS_CMD | tail -n +2 | sed "s/%//g" | awk '{s+=$1} END {print s}'`
SUM_CPU=`echo $DOCKER_STATS_CMD | tail -n +2 | sed "s/%//g" | awk '{s+=$2} END {print s}'`
SUM_RAM_QUANTITY=`LC_NUMERIC=C printf %.2f $(echo "$SUM_RAM*$HOST_MEM_TOTAL*0.01" | bc)`

Output the result
echo $DOCKER_STATS_CMD
echo -e "${SUM_RAM}%\t\t\t${SUM_CPU}%\t\t${SUM_RAM_QUANTITY}GiB / ${HOST_MEM_TOTAL}GiB\tTOTAL"

https://iqcode.com/code/typescript/how-to-get-docker-stats-using-shell-script

Link: https://signoz.io/blog/docker-stats/
Docker containers are transient (lasting for a very short time), spawning quickly and in high
numbers, which causes metrics bursts. This makes monitoring a challenge due to Docker's scaling
and redeployment features. Docker stats is a built-in feature of Docker containers. The docker stats
 command returns a live data stream of your running containers.

Docker is a containerization platform that lets you separate your applications from your
infrastructure to deliver software quickly. To monitor Docker, it is crucial to gather performance-
related metrics from various system elements, such as containers, hosts, and databases.

There are several ways in which Docker metrics can be monitored. These include;

Docker stats command
Pseudo-files in sysfs
REST API exposed by the Docker daemon

Note that these are in-built features of Docker.

Docker Stats | Understand
how to monitor Docker
Metrics with docker stats

Methods of monitoring Docker
Metrics​

Observability for your containerized application
Observability is critical for modern cloud-native applications. It helps
engineering teams have more confidence in their production environment.
Troubleshooting performance issues is easier with a robust observability
framework in place. SigNoz, an open-source observability tool, can help make

“

https://signoz.io/blog/docker-stats/
https://signoz.io/blog/docker-stats/#methods-of-monitoring-docker-metrics
https://signoz.io/

To get started with SigNoz, please visit the documentation.

In this article, we will deep dive into the docker stats command that can be used to monitor Docker
metrics right from the terminal.

The docker stats command is a built-in feature of Docker that displays resource consumption
statistics for the container in real-time. By default, it shows CPU and memory utilization for all
containers. Stats here refers to “statistics”. You can restrict the statistics by entering the container
names or IDs you're interested in monitoring. The docker stats command output includes CPU stats,
memory metrics, block I/O, and network IO metrics for all active containers.

Running the docker stats command produces an output that looks like the code snippet below. This
command shows the stats for all the running Docker containers.

your containerized applications observable.

What is the docker stats command?​

A Practical Approach​

$ docker stats

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM% NET I/O BLOCK
I/O PIDS
56b3f523b0sd nginx-container 0.35% 2.534MiB / 16.455GiB 0.37% 568B / 0B
134kb / 0B 3
049996113bc8 ubuntu 0.14% 1.437MiB / 16.455GiB 0.10% 3.56kb / 0B
5.12MB / 0B 1
a3f78cb32a8e hello-world 0.00% 1.228MiB / 16.455GiB 0.06% 65.45kb / 0B 550kb
/ 0B 0

https://signoz.io/blog/docker-stats/#what-is-the-docker-stats-command
https://signoz.io/blog/docker-stats/#a-practical-approach

The docker stats command returns a live snapshot of resource usage by Docker containers. Let’s
break down all the stats given by the command.

CPU is expressed as a percentage (%) of the overall host capacity. One can optimize the resource
usage of Docker hosts by being aware of how much CPU the hosts and containers consume. One
active/busy container shouldn't slow down other containers by consuming all of the CPU resources.
Containers can be optimized based on the amount of CPU they are using.

MEM USAGE lists the available memory. It gives a quick overview of the container's memory usage
and allocation, providing information about the container's memory statistics, including usage and
memory limit. Except when it is defined for a specific container, the memory usage limit
corresponds to the host machine's memory limit.

MEM % shows the memory percentage that the container is using from its host machine.

NET I/O shows the volume of information the container's network interface has transmitted(TX) and
received (RX). It represents network traffic.

Understanding the docker stats

 command output​

CPU% stats​

MEM USAGE / LIMIT Stats​

MEM % Stat​

Network(NET) I/O Stats​

BLOCK I/O Stats​

https://signoz.io/blog/docker-stats/#understanding-the-docker-stats-command-output
https://signoz.io/blog/docker-stats/#cpu-stats
https://signoz.io/blog/docker-stats/#mem-usage--limit-stats
https://signoz.io/blog/docker-stats/#mem--stat
https://signoz.io/blog/docker-stats/#networknet-io-stats
https://signoz.io/blog/docker-stats/#block-io-stats

BLOCK I/O helps to identify containers that are writing data and shows the total number of bytes
read and written to the container file system. Block I/O stats can give you an idea about issues with
data persistence.

PIDS is a count of the processes that the container has created or the number of kernel process IDs
running inside the corresponding container.

To get the stats of a particular container, provide the container Id and run the command docker
stats <containerID>

You can also get the stats of multiple containers by name and id if you run

docker stats <containerName> <containerId>

PIDS​

More on the usage of docker stats ​

Getting stats of a particular container​

$ docker stats 56b3f523b0sd

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM% NET I/O BLOCK
I/O PIDS
56b3f523b0sd nginx-container 0.35% 2.534MiB / 16.455GiB 0.37% 568B / 0B
134kb / 0B 3

$ docker stats ubuntu 56b3f523b0sd

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM% NET I/O BLOCK
I/O PIDS
049996113bc8 ubuntu 0.14% 1.437MiB / 16.455GiB 0.10% 3.56kb / 0B
5.12MB / 0B 1
56b3f523b0sd nginx-container 0.35% 2.534MiB / 16.455GiB 0.37% 568B / 0B
134kb / 0B 3

https://signoz.io/blog/docker-stats/#pids
https://signoz.io/blog/docker-stats/#more-on-the-usage-of-docker-stats
https://signoz.io/blog/docker-stats/#getting-stats-of-a-particular-container

These display options allow you to specify how you want the output to be shown.

Docker stats offers the following options for display:

1. --all which shows all containers, whether stopped or running.
2. --format which uses the Go Template syntax to print images out.
3. --no-stream which disables streaming stats and only pulls the first result
4. --no-trunc which instructs Docker not to truncate (shorten) output.

The syntax for this is shown below:

Let’s take a look at the --format option.

Docker format is used to modify the output format of commands that have the --format option. If a
command supports this option, it can be used to change the output format of the command to suit
our needs since the default command does not display all the fields connected to that object.

By using the Go Template syntax, the formatting option --format presents container output in an
easy-to-read way.

For example,

This prints out all images with the Container and CPUPerc (CPU Percentage) elements, separated
by a colon (:) and it uses a template without headers.

To display all container information in a table format, including name, CPU percentage, and
memory consumption, use the following syntax:

Display options that Docker Provides​

$ docker stats [OPTIONS] [CONTAINER...]

Using docker stats --format ​

$ docker stats --format "{{.Container}}: {{.CPUPerc}}"

049996113bc8: 0.14%
56b3f523b0sd: 0.35%

https://pkg.go.dev/text/template
https://signoz.io/blog/docker-stats/#display-options-that-docker-provides
https://signoz.io/blog/docker-stats/#using-docker-stats---format

Here is the list of applicable placeholders to use with the Go template syntax:

Placeholder Description

.container Container name or ID (user input)

.Name Container name

.ID Container ID

.CPUPerc CPU percentage

.MemUsage Memory usage

.NetIO Network IO

.BlockIO Block IO

.MemPerc Memory percentage (Not available on Windows)

.PIDs Number of PIDs (Not available on Windows)

In this article, we discussed ways to monitor resource usage metrics in Docker focused on the
docker stats command. Other ways of using The Docker stats, Pseudo-files in sysfs, and REST API
exposed by the Docker daemon are native ways of monitoring resource utilization metrics.

Docker container monitoring is critical for running containerized applications. For a robust
monitoring and observability setup, you need to use a tool that visualizes the metrics important for
container monitoring and also lets you set alerts on critical metrics. SigNoz is an open-source
observability tool that can help you do that.

It uses OpenTelemetry to collect metrics from your containers for monitoring. OpenTelemetry is
becoming the world standard for instrumentation of cloud-native applications, and it is backed by
CNCF foundation, the same foundation under which Kubernetes graduated.

If you want to set up a robust observability framework for your containerized application, you can
use SigNoz. You can create unified views to monitor your Docker containers effectively.

$ docker stats --format "table {{.Container}}\t{{.CPUPerc}}\t{{.MemUsage}}"

CONTAINER ID CPU % PRIV WORKING SET
56b3f523b0sd 0.35% 2.534MiB / 16.455GiB
049996113bc8 0.14% 1.437MiB / 16.455GiB
a3f78cb32a8e 0.00% 1.228MiB / 16.455GiB

Final Thoughts​

https://opentelemetry.io/
https://www.cncf.io/
https://signoz.io/blog/docker-stats/#final-thoughts

It is easy to get started with SigNoz. It can be installed on macOS or Linux computers in just three
steps by using a simple installation script.

The install script automatically installs Docker Engine on Linux. However, you must manually
install Docker Engine on macOS before running the install script.

git clone -b main https://github.com/SigNoz/signoz.git
cd signoz/deploy/
./install.sh

https://docs.docker.com/engine/install/

Link: https://gist.github.com/haukurk/a6e0751a8b8746265f8b2c55d9476230

#!/bin/bash

Author: Haukur Kristinsson / Erik Kristensen

Email: haukur@hauxi.is / erik@erikkristensen.com

License: MIT

Nagios Usage: check_nrpe!check_docker_container!_container_id_

Usage: ./check_docker_container.sh _container_id_

#

The script checks if a container is running.

OK - running

WARNING - container is ghosted

CRITICAL - container is stopped

UNKNOWN - does not exist

CONTAINER=$1

RUNNING=$(docker inspect --format="{{ .State.Running }}" $CONTAINER 2> /dev/null)

if [$? -eq 1]; then

echo "UNKNOWN - $CONTAINER does not exist."

exit 3

fi

if ["$RUNNING" == "false"]; then

echo "CRITICAL - $CONTAINER is not running."

exit 2

fi

STARTED=$(docker inspect --format="{{ .State.StartedAt }}" $CONTAINER)

NAME=$(docker inspect --format="{{ .Name }}" $CONTAINER)

Monitora containers

https://gist.github.com/haukurk/a6e0751a8b8746265f8b2c55d9476230

NETWORKMODE=$(docker inspect --format="{{ .HostConfig.NetworkMode }}" $CONTAINER)

NETWORK=$(docker inspect --format="{{ .NetworkSettings.Networks."$NETWORKMODE".IPAddress }}" $CONTAINER)

echo "OK - $CONTAINER is running. IP: $NETWORK, StartedAt: $STARTED, Named: $NAME"

Link: https://github.com/bcicen/ctop

git clone https://github.com/bcicen/ctop.git

ctop

release homebrew macports scoop

Top-like interface for container metrics

ctop provides a concise and condensed overview of real-time metrics for multiple containers:

ctop

as well as a single container view for inspecting a specific container.

ctop comes with built-in support for Docker and runC; connectors for other container and cluster
systems are planned for future releases.

Fetch the latest release for your platform:

Maintained by a third party

Coletar estatísticas Docker
com CTOP

Install

Debian/Ubuntu

sudo apt-get install ca-certificates curl gnupg lsb-release
curl -fsSL https://azlux.fr/repo.gpg.key | sudo gpg --dearmor -o /usr/share/keyrings/azlux-archive-keyring.gpg
echo \

https://github.com/bcicen/ctop
https://github.com/bcicen/ctop.git
https://github.com/bcicen/ctop/blob/master/_docs/img/logo.png
https://camo.githubusercontent.com/f2e8c51bf0c38981d85be87986a8f7d5e8ed686d6db21290f152552fbc7f76f4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f62636963656e2f63746f702e737667
https://camo.githubusercontent.com/ba72a31e322c2dfdeb4c4e6c7d2e482471acdb427b3c08b986a2d76783a88197/68747470733a2f2f696d672e736869656c64732e696f2f686f6d65627265772f762f63746f702e737667
https://camo.githubusercontent.com/a2b67573a6645861201389db3fd55a7b9779ee0828d42f2762f076e7c59393cc/68747470733a2f2f7265706f6c6f67792e6f72672f62616467652f76657273696f6e2d666f722d7265706f2f6d6163706f7274732f63746f702e7376673f6865616465723d6d6163706f727473
https://camo.githubusercontent.com/3f3571a714fde8a5e4b95da52f2f8ec901af0ca64c8d775f213872939564f4be/68747470733a2f2f696d672e736869656c64732e696f2f73636f6f702f762f63746f703f6275636b65743d6d61696e
https://github.com/bcicen/ctop/blob/master/_docs/img/grid.gif
https://github.com/bcicen/ctop/blob/master/_docs/single.md
https://github.com/bcicen/ctop#install
https://github.com/bcicen/ctop/releases
https://github.com/bcicen/ctop#debianubuntu
https://packages.azlux.fr/

ctop is also available for Arch in the AUR

or

or

ctop is available in scoop:

 "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/azlux-archive-keyring.gpg] http://packages.azlux.fr/debian \
 $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/azlux.list >/dev/null
sudo apt-get update
sudo apt-get install docker-ctop

Arch
sudo pacman -S ctop

Linux (Generic)
sudo wget https://github.com/bcicen/ctop/releases/download/v0.7.7/ctop-0.7.7-linux-amd64 -O /usr/local/bin/ctop
sudo chmod +x /usr/local/bin/ctop

OS X
brew install ctop

sudo port install ctop

sudo curl -Lo /usr/local/bin/ctop https://github.com/bcicen/ctop/releases/download/v0.7.7/ctop-0.7.7-darwin-amd64
sudo chmod +x /usr/local/bin/ctop

Windows

scoop install ctop

Docker
docker run --rm -ti \
 --name=ctop \
 --volume /var/run/docker.sock:/var/run/docker.sock:ro \
 quay.io/vektorlab/ctop:latest

https://github.com/bcicen/ctop#arch
https://aur.archlinux.org/packages/ctop-bin/
https://github.com/bcicen/ctop#linux-generic
https://github.com/bcicen/ctop#os-x
https://github.com/bcicen/ctop#windows
https://scoop.sh/
https://github.com/bcicen/ctop#docker

Build steps can be found here.

ctop requires no arguments and uses Docker host variables by default. See connectors for further
configuration options.

While running, use S to save the current filters, sort field, and other options to a default config
path (~/.config/ctop/config on XDG systems, else ~/.ctop).

Config file values will be loaded and applied the next time ctop is started.

Option Description

-a show active containers only

-f <string> set an initial filter string

-h display help dialog

-i invert default colors

-r reverse container sort order

-s select initial container sort field

-v output version information and exit

Key Action

<ENTER> Open container menu

Building

Usage

Config file

Options

Keybindings

https://github.com/bcicen/ctop#building
https://github.com/bcicen/ctop/blob/master/_docs/build.md
https://github.com/bcicen/ctop#usage
https://github.com/bcicen/ctop/blob/master/_docs/connectors.md
https://github.com/bcicen/ctop#config-file
https://github.com/bcicen/ctop#options
https://github.com/bcicen/ctop#keybindings

Key Action

a Toggle display of all (running and non-running) containers

f Filter displayed containers (esc to clear when open)

H Toggle ctop header

h Open help dialog

s Select container sort field

r Reverse container sort order

o Open single view

l View container logs (t to toggle timestamp when open)

e Exec Shell

c Configure columns

S Save current configuration to file

q Quit ctop

See Awesome Docker list for similar tools to work with Docker.

Alternatives

https://github.com/bcicen/ctop#alternatives
https://github.com/veggiemonk/awesome-docker/blob/master/README.md#terminal

Link: https://blog.devops.dev/15-scripts-to-automate-docker-container-management-4bab4c3faf73

Sometimes after a system reboot or maintenance, you may want to start all stopped containers at
once.

- ‘docker ps -aq’ lists all container IDs (stopped and running).
- ‘docker start’ starts the containers by passing the IDs as arguments.

Each example comes with
functioning code and detailed
explanations.

1. Automatically Start All
Containers

#!/bin/bash
Start all stopped containers
docker start $(docker ps -aq)

2. Stop All Running Containers

15 Scripts to Automate
Docker Container
Management

https://blog.devops.dev/15-scripts-to-automate-docker-container-management-4bab4c3faf73

Quickly stop all currently running containers.

- ‘docker ps -q’ lists IDs of only running containers.
- ‘docker stop’ stops these containers.

Free up space by cleaning up stopped containers.

- `docker ps -aq -f "status=exited"` filters stopped containers.
- ‘docker rm’ removes them.

Clear unused Docker images to save disk space.

- `docker images -q -f "dangling=true"` lists image IDs with no tags (dangling).
- ‘docker rmi’ removes these images.

Export the filesystem of a running container to a tar file.

#!/bin/bash
Stop all running containers
docker stop $(docker ps -q)

3. Remove Stopped Containers

#!/bin/bash
Remove all stopped containers
docker rm $(docker ps -aq -f "status=exited")

4. Remove Dangling Images

#!/bin/bash
Remove dangling images
docker rmi $(docker images -q -f "dangling=true")

5. Backup a Container’s Data

#!/bin/bash
Backup a container's data
CONTAINER_ID=$1
BACKUP_FILE="${CONTAINER_ID}_backup_$(date +%F).tar"
docker export $CONTAINER_ID > $BACKUP_FILE
echo "Backup saved to $BACKUP_FILE"

- ‘docker export’ exports the filesystem of the container.
- Pass the container ID as an argument to the script.

Recreate a container from a tar backup file.

- ‘docker import’ creates a new image from the tar file.
- The image can be used to start new containers.

Display real-time stats for all running containers.

- ‘docker stats’ shows real-time CPU, memory, and network stats.
- ‘--all’ includes stopped containers.

Ensure critical containers restart after failure.

6. Restore a Container from
Backup

#!/bin/bash
Restore a container from a tar backup
BACKUP_FILE=$1
docker import $BACKUP_FILE restored_container:latest
echo "Container restored as 'restored_container:latest'"

7. Monitor Container Resource
Usage

#!/bin/bash
Monitor resource usage of all running containers
docker stats --all

8. Restart a Container
Automatically

- ‘docker update --restart always’ configures the restart policy.
- Pass the container name as an argument.

Automatically remove a container after it stops.

- ‘--rm’ removes the container when it stops.
- Useful for one-off tasks.

Combine logs from multiple containers into one output.

- ‘docker ps -q’ lists running container IDs.
- ‘xargs’ passes these IDs to ‘docker logs’.

Schedule automated cleanup of unused Docker resources.

#!/bin/bash
Restart a container with restart policy
CONTAINER_NAME=$1
docker update --restart always $CONTAINER_NAME
echo "$CONTAINER_NAME will now restart automatically on failure."

9. Run a Container and Clean Up
After Exit

#!/bin/bash
Run a container and clean up
IMAGE_NAME=$1
docker run --rm $IMAGE_NAME

10. Check Logs of All Containers

#!/bin/bash
Display logs of all containers
docker ps -q | xargs -I {} docker logs {}

11. Auto-Prune Unused Resources

#!/bin/bash
Prune unused resources

- ‘docker system prune’ removes unused containers, networks, and images.
- ‘--volumes’ also deletes unused volumes.

Recreate containers with the latest image version.

- ‘docker inspect’ fetches the image name of a container.
- The script pulls the latest image and recreates the container.

Extract files or directories from a container to the host.

- ‘docker cp’ copies files between the container and the host.
- Pass container ID, source path, and destination path as arguments.

Restart all running containers quickly.

docker system prune -f --volumes

12. Update Running Containers

#!/bin/bash
Update a running container
CONTAINER_NAME=$1
IMAGE_NAME=$(docker inspect --format='{{.Config.Image}}' $CONTAINER_NAME)
docker pull $IMAGE_NAME
docker stop $CONTAINER_NAME
docker rm $CONTAINER_NAME
docker run -d --name $CONTAINER_NAME $IMAGE_NAME

13. Copy Files from a Container

#!/bin/bash
Copy files from a container
CONTAINER_ID=$1
SOURCE_PATH=$2
DEST_PATH=$3
docker cp $CONTAINER_ID:$SOURCE_PATH $DEST_PATH
echo "Copied $SOURCE_PATH from $CONTAINER_ID to $DEST_PATH"

14. Restart All Containers

- ‘docker restart’ restarts containers by their IDs.

Check the exposed ports of running containers.

- ‘docker ps --format’ customizes the output to show container IDs and ports.

Feel free to tweak, experiment and customize them to your needs.

#!/bin/bash
Restart all containers
docker restart $(docker ps -q)

15. List All Exposed Ports

#!/bin/bash
List all exposed ports
docker ps --format '{{.ID}}: {{.Ports}}'

Docker
Bash
Bash Script
Programming

https://medium.com/tag/docker?source=post_page-----4bab4c3faf73--------------------------------
https://medium.com/tag/bash?source=post_page-----4bab4c3faf73--------------------------------
https://medium.com/tag/bash-script?source=post_page-----4bab4c3faf73--------------------------------
https://medium.com/tag/programming?source=post_page-----4bab4c3faf73--------------------------------

