
Link: https://signoz.io/blog/docker-stats/
Docker containers are transient (lasting for a very short time), spawning quickly and in high
numbers, which causes metrics bursts. This makes monitoring a challenge due to Docker's scaling
and redeployment features. Docker stats is a built-in feature of Docker containers. The docker stats
 command returns a live data stream of your running containers.

Docker is a containerization platform that lets you separate your applications from your
infrastructure to deliver software quickly. To monitor Docker, it is crucial to gather performance-
related metrics from various system elements, such as containers, hosts, and databases.

There are several ways in which Docker metrics can be monitored. These include;

Docker stats command
Pseudo-files in sysfs
REST API exposed by the Docker daemon

Note that these are in-built features of Docker.

Docker Stats | Understand
how to monitor Docker
Metrics with docker stats

Methods of monitoring Docker
Metrics​

Observability for your containerized application
Observability is critical for modern cloud-native applications. It helps
engineering teams have more confidence in their production environment.
Troubleshooting performance issues is easier with a robust observability
framework in place.

“

https://signoz.io/blog/docker-stats/
https://signoz.io/blog/docker-stats/#methods-of-monitoring-docker-metrics

To get started with SigNoz, please visit the documentation.

In this article, we will deep dive into the docker stats command that can be used to monitor Docker
metrics right from the terminal.

The docker stats command is a built-in feature of Docker that displays resource consumption
statistics for the container in real-time. By default, it shows CPU and memory utilization for all
containers. Stats here refers to “statistics”. You can restrict the statistics by entering the container
names or IDs you're interested in monitoring. The docker stats command output includes CPU stats,
memory metrics, block I/O, and network IO metrics for all active containers.

Running the docker stats command produces an output that looks like the code snippet below. This
command shows the stats for all the running Docker containers.

SigNoz, an open-source observability tool, can help make your containerized
applications observable.

What is the docker stats command?​

A Practical Approach​

$ docker stats

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM% NET I/O BLOCK
I/O PIDS
56b3f523b0sd nginx-container 0.35% 2.534MiB / 16.455GiB 0.37% 568B / 0B
134kb / 0B 3
049996113bc8 ubuntu 0.14% 1.437MiB / 16.455GiB 0.10% 3.56kb / 0B
5.12MB / 0B 1
a3f78cb32a8e hello-world 0.00% 1.228MiB / 16.455GiB 0.06% 65.45kb / 0B 550kb
/ 0B 0

https://signoz.io/
https://signoz.io/blog/docker-stats/#what-is-the-docker-stats-command
https://signoz.io/blog/docker-stats/#a-practical-approach

The docker stats command returns a live snapshot of resource usage by Docker containers. Let’s
break down all the stats given by the command.

CPU is expressed as a percentage (%) of the overall host capacity. One can optimize the resource
usage of Docker hosts by being aware of how much CPU the hosts and containers consume. One
active/busy container shouldn't slow down other containers by consuming all of the CPU resources.
Containers can be optimized based on the amount of CPU they are using.

MEM USAGE lists the available memory. It gives a quick overview of the container's memory usage
and allocation, providing information about the container's memory statistics, including usage and
memory limit. Except when it is defined for a specific container, the memory usage limit
corresponds to the host machine's memory limit.

MEM % shows the memory percentage that the container is using from its host machine.

NET I/O shows the volume of information the container's network interface has transmitted(TX) and
received (RX). It represents network traffic.

Understanding the docker stats

 command output​

CPU% stats​

MEM USAGE / LIMIT Stats​

MEM % Stat​

Network(NET) I/O Stats​

BLOCK I/O Stats​

https://signoz.io/blog/docker-stats/#understanding-the-docker-stats-command-output
https://signoz.io/blog/docker-stats/#cpu-stats
https://signoz.io/blog/docker-stats/#mem-usage--limit-stats
https://signoz.io/blog/docker-stats/#mem--stat
https://signoz.io/blog/docker-stats/#networknet-io-stats
https://signoz.io/blog/docker-stats/#block-io-stats

BLOCK I/O helps to identify containers that are writing data and shows the total number of bytes
read and written to the container file system. Block I/O stats can give you an idea about issues with
data persistence.

PIDS is a count of the processes that the container has created or the number of kernel process IDs
running inside the corresponding container.

To get the stats of a particular container, provide the container Id and run the command docker
stats <containerID>

You can also get the stats of multiple containers by name and id if you run

docker stats <containerName> <containerId>

PIDS​

More on the usage of docker stats ​

Getting stats of a particular container​

$ docker stats 56b3f523b0sd

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM% NET I/O BLOCK
I/O PIDS
56b3f523b0sd nginx-container 0.35% 2.534MiB / 16.455GiB 0.37% 568B / 0B
134kb / 0B 3

$ docker stats ubuntu 56b3f523b0sd

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM% NET I/O BLOCK
I/O PIDS
049996113bc8 ubuntu 0.14% 1.437MiB / 16.455GiB 0.10% 3.56kb / 0B
5.12MB / 0B 1
56b3f523b0sd nginx-container 0.35% 2.534MiB / 16.455GiB 0.37% 568B / 0B
134kb / 0B 3

https://signoz.io/blog/docker-stats/#pids
https://signoz.io/blog/docker-stats/#more-on-the-usage-of-docker-stats
https://signoz.io/blog/docker-stats/#getting-stats-of-a-particular-container

These display options allow you to specify how you want the output to be shown.

Docker stats offers the following options for display:

1. --all which shows all containers, whether stopped or running.
2. --format which uses the Go Template syntax to print images out.
3. --no-stream which disables streaming stats and only pulls the first result
4. --no-trunc which instructs Docker not to truncate (shorten) output.

The syntax for this is shown below:

Let’s take a look at the --format option.

Docker format is used to modify the output format of commands that have the --format option. If a
command supports this option, it can be used to change the output format of the command to suit
our needs since the default command does not display all the fields connected to that object.

By using the Go Template syntax, the formatting option --format presents container output in an
easy-to-read way.

For example,

This prints out all images with the Container and CPUPerc (CPU Percentage) elements, separated
by a colon (:) and it uses a template without headers.

To display all container information in a table format, including name, CPU percentage, and
memory consumption, use the following syntax:

Display options that Docker Provides​

$ docker stats [OPTIONS] [CONTAINER...]

Using docker stats --format ​

$ docker stats --format "{{.Container}}: {{.CPUPerc}}"

049996113bc8: 0.14%
56b3f523b0sd: 0.35%

https://pkg.go.dev/text/template
https://signoz.io/blog/docker-stats/#display-options-that-docker-provides
https://signoz.io/blog/docker-stats/#using-docker-stats---format

Here is the list of applicable placeholders to use with the Go template syntax:

Placeholder Description

.container Container name or ID (user input)

.Name Container name

.ID Container ID

.CPUPerc CPU percentage

.MemUsage Memory usage

.NetIO Network IO

.BlockIO Block IO

.MemPerc Memory percentage (Not available on Windows)

.PIDs Number of PIDs (Not available on Windows)

In this article, we discussed ways to monitor resource usage metrics in Docker focused on the
docker stats command. Other ways of using The Docker stats, Pseudo-files in sysfs, and REST API
exposed by the Docker daemon are native ways of monitoring resource utilization metrics.

Docker container monitoring is critical for running containerized applications. For a robust
monitoring and observability setup, you need to use a tool that visualizes the metrics important for
container monitoring and also lets you set alerts on critical metrics. SigNoz is an open-source
observability tool that can help you do that.

It uses OpenTelemetry to collect metrics from your containers for monitoring. OpenTelemetry is
becoming the world standard for instrumentation of cloud-native applications, and it is backed by
CNCF foundation, the same foundation under which Kubernetes graduated.

$ docker stats --format "table {{.Container}}\t{{.CPUPerc}}\t{{.MemUsage}}"

CONTAINER ID CPU % PRIV WORKING SET
56b3f523b0sd 0.35% 2.534MiB / 16.455GiB
049996113bc8 0.14% 1.437MiB / 16.455GiB
a3f78cb32a8e 0.00% 1.228MiB / 16.455GiB

Final Thoughts​

https://opentelemetry.io/
https://www.cncf.io/
https://signoz.io/blog/docker-stats/#final-thoughts

If you want to set up a robust observability framework for your containerized application, you can
use SigNoz. You can create unified views to monitor your Docker containers effectively.

It is easy to get started with SigNoz. It can be installed on macOS or Linux computers in just three
steps by using a simple installation script.

The install script automatically installs Docker Engine on Linux. However, you must manually
install Docker Engine on macOS before running the install script.

git clone -b main https://github.com/SigNoz/signoz.git
cd signoz/deploy/
./install.sh

Revision #1
Created 5 May 2024 11:01:03 by Administrador
Updated 4 July 2024 18:59:31 by Administrador

https://docs.docker.com/engine/install/

