
Duplicati Monitor
Duplicati Dashboard
Duplicati Dashboard2

Customizações
Duplicati

Link: https://github.com/RafaMunoz/duplicati-monitor git clone
https://github.com/RafaMunoz/duplicati-monitor.git

Duplicati Monitor is a docker-packaged monitoring solution for Duplicati.

It allows you to control the status of your backups and statistics for each report and notifies you by
any means supported by Apprice. It is meant to be self-hosted and powered by docker.

To send notifications and satisfy the end user, it has been implemented with the Apprise library,
which allows you to send a notification to almost all the most popular notification services available
today, such as: Telegram, Discord, Slack, Amazon SNS, Gotify, etc.

You can check all the services available in the official documentation.

You can create your own templates to receive the information you exactly need.

By default we use the following two:

Duplicati Monitor

Duplicati Monitor

Quick Start

Notifications

Templates

Succes backup
�� �� <Extra.backup-name>

Error backup

https://github.com/RafaMunoz/duplicati-monitor
https://github.com/RafaMunoz/duplicati-monitor.git
https://github.com/RafaMunoz/duplicati-monitor#duplicati-monitor
https://github.com/RafaMunoz/duplicati-monitor#quick-start
https://github.com/RafaMunoz/duplicati-monitor#notifications
https://github.com/caronc/apprise#productivity-based-notifications
https://github.com/RafaMunoz/duplicati-monitor#templates

You can create your own templates in a simple way. You only have to use the symbols < and >
delimit the fields and separating keys with dots . to send along with the message that you want.

In the docs/examples_report folder of this repository you have two examples of the JSON reports
that Duplicati sends and in which you can see the fields that compose it.

For example, with the following template, the result shown in the telegram image would be
obtained.

telegram-example-notication

ENVIRONMENT
VARIABLE

TYPE DEFAULT DESCRIPTION

URI_NOTIFICATION required URI in Apprise format where the notifications will be sent.

TEMPLATE_SUCCESS opcional �� ��
<Extra.backup-
name>

Message template to be sent when the backup is successful.

TEMPLATE_ERROR opcional �� ��
<Extra.backup-
name>

Message template that will be sent when the backup is
executed in an erroneous way.

PORT opcional 8000 Listening port on which the service is set up to receive the
reports.

To start the container you can do it with the following command.

�� �� <Extra.backup-name>

�� �� Backup: <Extra.backup-name>\n - Examined Files: <Data.ExaminedFiles>\n - Duration:
<Data.Duration>\n - Status: *<Data.TestResults.ParsedResult>*

Environment Variables

Docker Run

docker run -d --name=duplicati-monitor -p 8000:8000 -e
URI_NOTIFICATION=tgram://<TOKEN_TELEGRAM_BOT>/<CHANEL_ID>/?format=markdown rafa93m/duplicati-
monitor

https://github.com/RafaMunoz/duplicati-monitor/blob/main/docs/examples_report
https://github.com/RafaMunoz/duplicati-monitor/blob/main/docs/img/telegram-example-notication.png
https://github.com/RafaMunoz/duplicati-monitor#environment-variables
https://github.com/RafaMunoz/duplicati-monitor#docker-run

Or you can also use the following docker compose.

Add theses two options for each backup you want to monitor:

send-http-result-output-format: json
send-http-url: http://IP_ADDRESS:PORT/report

advanced-options

version: "3"
services:
 duplicati-monitor:
 container_name: duplicati-monitor
 image: rafa93m/duplicati-monitor
 ports:
 - 8000:8000
 environment:
 URI_NOTIFICATION: "tgram://<TOKEN_TELEGRAM_BOT>/<CHANEL_ID>/?format=markdown"
 TEMPLATE_SUCCESS: "�� �� Backup: <Extra.backup-name>"
 TEMPLATE_ERROR: "�� �� Backup <Extra.backup-name> failed �� ��"
 restart: unless-stopped

Setup Duplicati

https://github.com/RafaMunoz/duplicati-monitor#setup-duplicati
https://github.com/RafaMunoz/duplicati-monitor/blob/main/docs/img/advanced-options.png

Link: https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#demo
git clone https://github.com/fabien-github/duplicati_dashboard.git

Duplicati Dashboard is a monitoring solution for Duplicati.

It allows you to monitor your backups status, collects stats for each reports and alerts you by email
when a backup fails. It is intended to be self-hosted and works with docker-compose.

Everything is already pre-configured and ready to be deployed.

Duplicati Dashboard
Demo
Quick Start

Running with docker-compose
Setup Duplicati
Connect to your dashboard

Configuration
Env file

Notes
Grafana configuration locked
Backup over more than 30 days rotation
Alerting graph
Deleting removed backup data
Docker-compose

Other informations
License

Duplicati Dashboard

Demo

https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#demo
https://github.com/fabien-github/duplicati_dashboard.git
https://www.duplicati.com/
https://docs.docker.com/compose/
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#duplicati-dashboard
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#demo
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#quick-start
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#running-with-docker-compose
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#setup-duplicati
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#connect-to-your-dashboard
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#configuration
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#env-file
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#notes
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#grafana-configuration-locked
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#backup-over-more-than-30-days-rotation
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#alerting-graph
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#deleting-removed-backup-data
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#docker-compose
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#other-informations
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#license
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#demo

Add theses two options for each backup you want to monitor:

send-http-result-output-format: json
send-http-url: http://localhost:8080

http://localhost:3000

The right side of the video is not integrated in the dashboard. You can't control
your backup with it.“

Quick Start

Running with docker-compose
git clone https://github.com/fabien-github/duplicati_dashboard.git
cd duplicati_dashboard
docker-compose up -d

Setup Duplicati

This assumes that your Duplicati instance is on the same host as your Duplicati
Dashboard.“

Connect to your dashboard

https://github.com/fabien-github/duplicati_dashboard/blob/main/docs/img/demo.gif
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#quick-start
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#running-with-docker-compose
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#setup-duplicati
http://localhost:8080
https://github.com/fabien-github/duplicati_dashboard/blob/main/docs/img/backup_options_report_config.png
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#connect-to-your-dashboard
http://localhost:3000

Login: admin Password: password

The file config.env is used to configure some options. It will be shared between the 3 containers.

Only use this default configuration for testing purposes.

Influxdb variable will create and setup the database only on the first startup.

Variables Default Description

DOCKER_INFLUXDB_INIT_MODE setup Automatically bootstrap the system

DOCKER_INFLUXDB_INIT_USERNAME telegraf_user Influxdb superadmin user

DOCKER_INFLUXDB_INIT_PASSWORD telegraf_password Influxdb superadmin password

DOCKER_INFLUXDB_INIT_ORG telegraf_org Influxdb Organization (used by
influxdb / telegraf / grafana)

DOCKER_INFLUXDB_INIT_BUCKET telegraf Influxdb bucket to store reports (used
by influxdb / telegraf / grafana)

DOCKER_INFLUXDB_INIT_ADMIN_TOKE
N

telegraf_token Influxdb superadmin token (used by
influxdb / telegraf / grafana)

DOCKER_INFLUXDB_INIT_RETENTION Influxdb data retention, default will
retain forever

INFLUXD_REPORTING_DISABLED false Disable InfluxData telemetry

TELEGRAF_LISTENER_PORT 8080 Port used by http_listener_v2 input,
endpoint for the reports sent by
Duplicati

TELEGRAF_LISTENER_PATH / Path to listen to

GF_SECURITY_ADMIN_USER admin Grafana superadmin user

For email alerting, you need to configure a SMTP relay. See Configuration > Env
file

“

Configuration

Env file

https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#configuration
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#env-file
https://github.com/fabien-github/duplicati_dashboard/blob/main/config.env
https://github.com/docker-library/docs/blob/master/influxdb/README.md#automated-setup
https://docs.influxdata.com/influxdb/v2.0/reference/config-options/#reporting-disabled
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/http_listener_v2
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#env-file
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#env-file

Variables Default Description

GF_SECURITY_ADMIN_PASSWORD password Grafana superadmin password

GF_SERVER_ROOT_URL http://localhost:3000 Grafana URL, used in some templates
like email notifications

GF_DASHBOARDS_DEFAULT_HOME_D
ASHBOARD_PATH

/etc/grafana/provisioning/dashboards/
duplicati_dashboard.json

Force Duplicati dashboard by default
on home page

GF_SMTP_ENABLED false Set to true for email notifications

GF_SMTP_HOST localhost:25 SMTP relay server. [host]:[port]

GF_SMTP_FROM_NAME Grafana Name of the email sender

GF_SMTP_USER In case of SMTP auth

GF_SMTP_PASSWORD In case of SMTP auth

GF_SMTP_FROM_ADDRESS admin@grafana.localhost Address used when sending out
emails

GF_SMTP_EHLO_IDENTITY ${HOSTNAME} Name to be used as client identity for
EHLO in SMTP dialog (Default will be
the container ID)

GF_SMTP_STARTTLS_POLICY “OpportunisticStartTLS”,
“MandatoryStartTLS”, “NoStartTLS”

NOTIFIER_EMAIL_RECIPIENT example@example.com Recipients for email notification
(separated by a semicolon)

NOTIFIER_EMAIL_REMINDER_ENABLE true Re-send an email if alerts are still
active

NOTIFIER_EMAIL_REMINDER_FREQUEN
CY

2h Delay between email reminders

The dashboard is locked by the Grafana provisioning system. You can't edit the datasource, the
dashboard or the alert notifier from the UI. You will need to copy the dashboard or disable the
provisioning configuration.

Dashboard path: ./grafana/provisioning/dashboards/duplicati_dashboard.json

Notes

Grafana configuration locked

http://localhost:3000
https://grafana.com/docs/grafana/latest/administration/configuration/#smtp
mailto:admin@grafana.localhost
mailto:example@example.com
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#notes
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#grafana-configuration-locked

The idea is to keep the stack easy to deploy for everyone without investing time to learn Grafana
configuration.

Feel free to fork the project or directly edit files on your own.

More information here.

Grafana will discover your backups name from the reports but only over the last 90 days.
So if your backups are scheduled for more than 90 days, you will need to edit the request
of the variable Backup in the dashboard configuration:

Last reported status / Last reported variations / Alerting graph are based over the past 30
days. You will need to adapt each panel requests if your backups are scheduled over more
than 30 days.

In v2, alerts have their own provisioning file and query range can be edited here.

The section "Alerting graph" is only used to trigger an alert when a backup fails. This is due to the
lack of grafana alert support on other panel type. #6983

Backup over more than 30 days
rotation

from(bucket: v.defaultBucket)
 |> range(start: -90d)
 |> filter(fn: (r) => true)
 |> toString()
 |> group(columns: ["backup-name"])
 |> distinct(column: "backup-name")
 |> keep(columns: ["_value"])

import "influxdata/influxdb/schema"

from(bucket: v.defaultBucket)
 |> range(start: -30d)
 ...

Alerting graph

https://grafana.com/docs/grafana/latest/administration/provisioning/
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#backup-over-more-than-30-days-rotation
https://github.com/fabien-github/duplicati_dashboard/releases/tag/v1.0.0
https://github.com/fabien-github/duplicati_dashboard/blob/3e1d558d54c6b3ecbb7ed67627a812c5dd060f31/grafana/provisioning/alerting/duplicati_alert.yml#L30
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#alerting-graph
https://github.com/grafana/grafana/issues/6983

Backups status will be checked every minutes. An alert will be triggered after a pending status of
10min. Same delays are used on the recovery.

Warning reports don't trigger an alert.

After getting inside the influxdb container:

Telegraf: Receive JSON reports from Duplicati.
Influxdb: Store reports converted by Telegraf.
Grafana: Requests Influxdb to generate dashboard and alerts.

Telegraf endpoint provides a limited HTTP autentification.
The configuration file is located here : ./telegraf/telegraf.conf

Feel free to add a proxy like traefik or nginx to protect the stack on an unsecure network. (TLS, IP
Restrictions, ...)

Not sure of the scalabilty, requests to the database are not efficients. Timeseries
databases are not really adapted for this kind of data. This is mainly due to the nested
and uneven json format from the reports and the variation time between reports.
Features are limited directly by the stack itself. For example, it's nearly impossible to add
a managment system for the backups.
This project has no link with the development of Duplicati and his team.

Deleting removed backup data

influx delete \
 --org telegraf_org \
 --bucket telegraf \
 --token "telegraf_token" \
 --start 1970-01-01T00:00:00Z \
 --stop $(date +"%Y-%m-%dT%H:%M:%SZ") \
 --predicate '_measurement="duplicati" AND "backup-name"="backup_to_delete"'

Docker-compose

Other informations

https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#deleting-removed-backup-data
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#docker-compose
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/http_listener_v2
https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#other-informations

Distributed under the GNU General Public License v3.0 License. See LICENSE for more information.

License

https://github.com/fabien-github/duplicati_dashboard?tab=readme-ov-file#license
https://github.com/fabien-github/duplicati_dashboard/blob/main/LICENSE

Link: https://github.com/wchorski/duplicati-dashboard git clone
https://github.com/wchorski/duplicati-dashboard.git

A NodeJS based server that collects JSON data from Duplicati backup logs
�� Tech

 Frontend: NextJS
 API: NextJS
 Database: InfluxDB

 [!warning] Backups sharing the same name will cause issues. The backup's name must be
unique across all Duplicati instances, it will be used as an ID for logging. MUST BE URL FRIENDLY
example: "Laptop--Home_Folder_Backup", "Desktop--Home_Folder_Backup" is a good naming
convention.

Usecase

Initally this was just some middle ware that serves as an endpoint for JSON friendly monitoring
apps, but I also built a simple UI so it could be used as a standalone app.
Duplicati Setup

you can either add these settings for the globally or per backup in the Advanced options

 send-http-result-output-format = json
 send-http-url = "http://APPSDOMAIN/api/backups"

API

Here is a breakdown of what endpoints and search parameters that can be passed through.
URL Breakdown

http://APPDOMAIN/backups/BACKUP_ID?start=-5h&first=true

 BACKUP_ID => the id (or name) of the backup saved
 stuff after the "?" search query sets range of time of pulled data
 start => how far back to you want to start pulling data i.e.
 -40d 40 days ago [the default]
 -5h 5 hours ago
 -60m 60 miniutes ago
 1999-12-31T00:00:00 starting on December 31st, 1999
 1694117521 starting on this UNIX time (seconds)

Duplicati Dashboard2

https://github.com/wchorski/duplicati-dashboard
https://github.com/wchorski/duplicati-dashboard.git

 stop => the end of the range
 now() => my current time [the default]
 all the other examples above as long as the date is after the start
 both query parameters can be omitted
 last => set to true if you'd like the last recorded point in the table
 can also use the http://localhost:3000/api/backups/last/BACKUP_ID endpoint for cleaner GET
(this endpoint also takes start and stop query parameters)
 first => same as last but returns the first point of recoreded data within the range

 [!note] make sure relative dates have a negative i.e. -5h as your are looking back in time.
Positive time values will cause errors

Examples
query url
all backup stats in database http://APPDOMAIN/backups
single backup stats http://APPDOMAIN/backups/BACKUP_ID
last recorded backup stat http://APPDOMAIN/backups/last/BACKUP_ID
same as above http://APPDOMAIN/backups/BACKUP_ID?last=true
last recorded backup stat in the last 5 hours http://APPDOMAIN/backups/last/BACKUP_ID?start=-
5h
⚙️ Development

 git clone https://github.com/wchorski/duplicati-dashboard.git && cd duplicati-dashboard
 cp .env.template .env.local
 set up InfluxDB instance
 get InfluxDB API Token for .env.local
 yarn install
 yarn dev

�� Production

 git clone https://github.com/wchorski/duplicati-dashboard.git && cd duplicati-dashboard
 cp .env.template .env
 the INFLUX_TOKEN in .env should be a long ~88 character string
 docker compose up -d

Home Assistant

rest:
- authentication: basic
 username: "admin"
 password: "password"
 scan_interval: 86400
 resource: http://APPDOMAIN.lan/api/backups/last/DUPLICATI_ID
 sensor:
 - name: "duplicati-DUPLICATI_ID-status"

 value_template: "{{ value_json.status }}"
 - name: "duplicati-DUPLICATI_ID-time"
 value_template: >
 {% set thistime = value_json.time %}
 {{ as_timestamp(thistime) | timestamp_custom("%Y %M, %d %H:%M") }}

#Todo

 create dynamic nav based on unique duplicati_ids from database
 add FAQ as a page inside the app
 mobile friendly (almost there)
 graph trends in app
 Home Assistant Template sensor
 Don't be lazy and figure out Types in TableClient.tsx component
 get real data for screenshots
 why is bg tile image weird when scrolling on mobile?
 human readable bytes formatter (gb tb)
 human readable duration formatter

