
Configurações GlusterFS

Tutorial: Create a Docker Swarm with Persistent Storage Using GlusterFS
Tutorial: Deploy a Highly Availability GlusterFS Storage Cluster
Setup a scalable high availability GlusterFS network filesystem with Docker Swarm on
Ubuntu Server 20.04 LTS
Setup Highly Available applications with Docker Swarm and Gluster

Configurações
GlusterFS

Link: https://thenewstack.io/tutorial-create-a-docker-swarm-with-persistent-storage-using-glusterfs/

How to use GlusterFS to provide persistent storage for a Docker Swarm.
Apr 2nd, 2020 12:00pm by Jack Wallen
Featued image for: Tutorial: Create a Docker Swarm with Persistent Storage Using GlusterFS
Feature image: The GlusterFS Ant, Gluster.
Unleashing a Docker Swarm orchestrator is a great (and relatively easy) way to deploy a container
cluster. Yes, you could go with Kubernetes for more management features, but when you need the
bare bones of a simple container cluster, Docker Swarm is a pretty good way to go.

The one thing you might find yourself needing is persistent storage for your cluster. What is
persistent storage? I’m glad you asked. To put it simply, persistent storage is any type of data
storage device that retains data, even after power to the device is cut off. With regards to a
container, persistent storage is storage that remains, even if the container isn’t running. In other
words, persistent storage is found on the hosting server, so when the container is spun down, the
data within the storage is still accessible. Or, if the container is a part of the swarm, that persistent
storage can be shared between nodes.

To any container developer, persistent storage is often a must-use tool. With some container
technology, persistent storage can be done quite simply. Although with Docker you can use
volumes, the problem with that feature is that it is a local-only system. Because of that, you need
to make use of third-party software like NFS or GlusterFS. The big downfall with NFS is it’s not
encrypted. So for many businesses and developers, GlusterFS is the way to go.

I want to walk you through the process of using GlusterFS to share persistent storage in a Docker
Swarm.

Tutorial: Create a Docker
Swarm with Persistent
Storage Using GlusterFS

What You’ll Need

https://thenewstack.io/tutorial-create-a-docker-swarm-with-persistent-storage-using-glusterfs/
https://thenewstack.io/author/jack-wallen/
https://www.gluster.org/
https://thenewstack.io/docker-swarm-a-user-friendly-alternative-to-kubernetes/
https://thenewstack.io/storage/
https://thenewstack.io/storage/
https://www.extrahop.com/resources/protocols/nfs/
https://www.gluster.org/

I’ll be demonstrating on a small cluster with one master and two nodes, each of which will be
running on Ubuntu Server 18.04. So for that, you’ll need:

Three running and updated instances of Ubuntu Server 18.04.
A user with sudo privileges.

That’s all you need to make this work.

Before you get going, it’s always best to update and upgrade your server OS. To do this on Ubuntu
(or any Debian-based platform), open a terminal and issue the commands:

TRENDING STORIES

1. Docker Basics: How to Use Dockerfiles
2. Exploring MicroOS, OpenSUSE's Immutable Container OS
3. What Is the Docker .env File and How Do You Use It?
4. Canonical Offers LTS 'Distroless' Containerized Apps for K8s
5. Container Image Fault Lines Are Being Exposed

sudo apt-get update

sudo apt-get upgrade -y

Should your kernel upgrade in the process, make sure to reboot the server so the changes will take
effect.

We now need to map our IP addresses in /etc/hosts. Do this on each machine. Issue the
command:

sudo nano /etc/hosts

In that file (on each machine), you’ll add something like this to the bottom of the file:

1
2
3

192.168.1.67 docker-master
192.168.1.107 docker-node1
192.168.1.117 docker-node2

Update/Upgrade

Add Your Hosts

https://thenewstack.io/docker-basics-how-to-use-dockerfiles/
https://thenewstack.io/exploring-microos-opensuses-immutable-container-os/
https://thenewstack.io/what-is-the-docker-env-file-and-how-do-you-use-it/
https://thenewstack.io/canonical-offers-lts-distroless-containerized-apps-for-k8s/
https://thenewstack.io/container-image-fault-lines-are-being-exposed/

Make sure to edit the above to match your IP addresses and hostnames.

Save and close the file.

If you haven’t already done so, you need to install and deploy the Docker Swarm. On each machine
install Docker with the command:

sudo apt-get install docker.io -y

Start and enable Docker with the commands:

sudo systemctl start docker

sudo systemctl enable docker

Add your user to the docker group (on all machines) with the command:

sudo usermod -aG docker $USER

Issue the following command (on all machines) so the changes take effect:

sudo newgrp docker

Next, we need to initialize the swarm. On the master issue the command:

docker swarm init --advertise-addr MASTER_IP

Where MASTER_IP is the IP address of the master.

Once the swarm has been initialized, it’ll display the command you need to run on each node. That
command will look like:

docker swarm join --token SWMTKN-1-09c0p3304ookcnibhg3lp5ovkjnylmxwjac9j5puvsj2wjzhn1-
2vw4t2474ww1mbq4xzqpg0cru 192.168.1.67:2377

Copy that command and paste it into the terminal window of the nodes to join them to the master.

And that’s all there is to deploying the swarm.

You now need to install GlusterFS on each server within the swarm. First, install the necessary
dependencies with the command:

Deploy the Swarm

Installing GlusterFS

sudo apt-get install software-properties-common -y

Next, add the necessary repository with the command:

sudo add-apt-repository ppa:gluster/glusterfs-3.12

Update apt with the command:

sudo apt-get update

Install the GlusterFS server with the command:

sudo apt install glusterfs-server -y

Finally, start and enable GlusterFS with the commands:

sudo systemctl start glusterd

sudo systemctl enable glusterd

If you haven’t already done so, you should generate an SSH key for each machine. To do this, issue
the command:

ssh-keygen -t rsa

Once you’ve taken care of that, it’s time to continue on.

Now we’re going to have Gluster probe all of the nodes. This will be done from the master. I’m
going to stick with my example of two nodes, which are docker-node1 and docker-node2. Before
you issue the command, you’ll need to change to the superuser with:

sudo -s

If you don’t issue the Gluster probe command from root, you’ll get an error that it cannot write to
the logs. The probe command looks like:

gluster peer probe docker-node1; gluster peer probe docker-node2;

Make sure to edit the command to fit your configuration (for hostnames).

Once the command completes, you can check to make sure your nodes are connected with the
command:

Generate SSH Keys

Probing the Nodes

gluster pool list

You should see all nodes listed as connected (Figure 1).

 Zoom
Figure 1: Our nodes are connected.

Exit out of the root user with the exit command.

Let’s create a directory to be used for the Gluster volume. This same command will be run on all
machines:

Create the Gluster Volume

https://cdn.thenewstack.io/media/2020/03/5c6874e0-dockerswarmpersistent1.jpg

sudo mkdir -p /gluster/volume1

Use whatever name you want in place of volume1.

Now we’ll create the volume across the cluster with the command (run only on the master):

sudo gluster volume create staging-gfs replica 3 docker-master:/gluster/volume1 docker-node1:/gluster/volume1
docker-node2:/gluster/volume1 force

Start the volume with the command:

sudo gluster volume start staging-gfs

The volume is now up and running, but we need to make sure the volume will mount on a reboot
(or other circumstances). We’ll mount the volume to the /mnt directory. To do this, issue the
following commands on all machines:

sudo -s

echo 'localhost:/staging-gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab

mount.glusterfs localhost:/staging-gfs /mnt

chown -R root:docker /mnt

exit

To make sure the Gluster volume is mounted, issue the command:

df -h

You should see it listed at the bottom (Figure 2).

https://cdn.thenewstack.io/media/2020/03/91ce4329-dockerswarmpersistent2.jpg

 Zoom
Figure 2: Our Gluster volume is mounted properly.

You can now create new files in the /mnt directory and they’ll show up in the /gluster/volume1
 directories on every machine.

At this point, you are ready to integrate your persistent storage volume with docker. Say, for
instance, you need persistent storage for a MySQL database. In your docker YAML files, you could
add a section like so:

1
2
3
4

<i> volumes:
</i><i> - type: bind
</i><i> source: /mnt/staging_mysql
</i><i> target: /opt/mysql/data</i>

Since we’ve mounted our persistent storage in /mnt everything saved there on one docker node
will sync with all other nodes.

And that’s how you can create persistent storage and then use it within a Docker Swarm cluster. Of
course, this isn’t the only way to make persistent storage work, but it is one of the easiest (and
cheapest). Give GlusterFS a try as your persistent storage option and see if it doesn’t work out for
you.

Tutorial: Set up Cloud Storage on a Linux Server, Using Seafile

Tutorial: Deploy a Highly Availability GlusterFS Storage Cluster

Tutorial: Dynamic Provisioning of Persistent Storage in Kubernetes with MiniKube

Using Your New Gluster Volume
with Docker

More Storage Tutorials

https://cdn.thenewstack.io/media/2020/03/91ce4329-dockerswarmpersistent2.jpg
https://thenewstack.io/tutorial-set-up-cloud-storage-on-a-linux-server-using-seafile/
https://thenewstack.io/tutorial-deploy-a-highly-availability-glusterfs-storage-cluster/
https://thenewstack.io/tutorial-dynamic-provisioning-of-persistent-storage-in-kubernetes-with-minikube/

Link: https://thenewstack.io/tutorial-deploy-a-highly-availability-glusterfs-storage-cluster/

The GlusterFS network file system is perfectly suited for various use cases that require the
handling of large amounts (think petabytes) of stored data.
Nov 6th, 2020 10:32am by Jack Wallen
Featued image for: Tutorial: Deploy a Highly Availability GlusterFS Storage Cluster
The GlusterFS network file system is perfectly suited for various use cases that require the
handling of large amounts (think petabytes) of stored data. In other words, this could be the ideal
storage system for your various cloud or container deployments. With features like sharding,
tiering, AFR Statistics, file snapshots, distributed hash tables, nonuniform file access, OVirt and
QEMU integration, RDMA connection manager, rebalance, server quorum, distributed geo-
replication, and brick failure detection, this file system might be ideal for your needs. Red Hat
currently manages this open source network file system.

Of course, how you use GlusterFS with your cloud implementation will depend on which cloud
platform you are using. But before you can roll it into your system, you first must get this
networkable storage up and running.

I’m going to walk you through the process of deploying a three-node GlusterFS cluster on Ubuntu
Server 20.04. To make this work you’ll need three instances of Ubuntu. For my purposes those will
have the following hostnames and IP addresses:

192.168.1.24 gluster1

192.168.1.25 gluster2

192.168.1.26 gluster3

You will want to change the IP addresses to match your network topography.

TRENDING STORIES

Tutorial: Deploy a Highly
Availability GlusterFS
Storage Cluster

https://thenewstack.io/tutorial-deploy-a-highly-availability-glusterfs-storage-cluster/
https://thenewstack.io/author/jack-wallen/
https://www.gluster.org/
https://thenewstack.io/storage/

1. The Architect’s Guide to Storage for AI
2. The Architect’s Guide: A Modern Data Lake Reference Architecture
3. How to Work with Containers in TrueNAS
4. How to Create an Object Storage Bucket with MinIO Object Storage
5. Enable End-to-End Encryption Between Nextcloud and Your Desktop Client

After spinning up your instances of Ubuntu, the first thing you want to do is update and upgrade
each. You can do that (on all three) with the following two commands:

sudo apt-get update

sudo apt-get upgrade -y

If the kernel gets upgraded in any of these instances, you’ll want to make sure to reboot the server
(so the updates get applied).

After you’ve upgraded, you’ll then want to set the hostname for each. This can be done with a
handy command like so:

sudo hostnamectl set-hostname NAME

Where NAME will be gluster1, gluster2, and gluster3.

Next, we need to map the addresses in the /etc/hosts file. Open that file (on each server) for
editing with the command:

sudo nano /etc/hosts

Map those addresses by adding the following at the bottom of the file:

1
2
3

192.168.1.24 gluster1
192.168.1.25 gluster2
192.168.1.26 gluster3

Save and close the file.

First Steps

https://thenewstack.io/the-architects-guide-to-storage-for-ai/
https://thenewstack.io/the-architects-guide-a-modern-data-lake-reference-architecture/
https://thenewstack.io/how-to-work-with-containers-in-truenas/
https://thenewstack.io/how-to-create-an-object-storage-bucket-with-minio-object-storage/
https://thenewstack.io/enable-end-to-end-encryption-between-nextcloud-and-your-desktop-client/

With the release of Ubuntu Server 20.04, GlusterFS is now found in the standard repositories. So to
install the software, go back to the terminal window and issue the command:

sudo apt-get install glusterfs-server -y

Make sure to install GlusterFS on gluster1 and gluster2.

After the installation completes, start and enable GlusterFS on each server with the following two
commands:

sudo systemctl start glusterd

sudo systemctl enable glusterd

Now that your servers are ready and GlusterFS is installed, it’s time to configure gluster. On
gluster1, create a trusted pool with the command:

sudo gluster peer probe gluster2

You should see peer probe: success returned.

Verify the status of the two peers with the command:

sudo gluster peer status

You should see that gluster2 is connected (Figure 1).

Figure 1: Our gluster1 and gluster2 servers are connected.

 Zoom
Figure 1: Our gluster1 and gluster2 servers are connected.

Installing GlusterFS

Configuring GlusterFS

https://cdn.thenewstack.io/media/2020/11/8d694473-gluster1.jpg

We’ll next create a distributed volume. I would highly recommend you create this volume on a
partition that isn’t within the system directory (aka, not on the same drive that your OS is hosted
on). If you create this volume on the same drive as the OS, you could run into sync errors.

Let’s create a new directory for GlusterFS (on both gluster1 and gluster2) with the command:

sudo mkdir -p /glusterfs/distributed

With the directory created, we can now create the volume (named v01) that will replicate on both
gluster1 and gluster2. The command for this is:

sudo gluster volume create v01 replica 2 transport tcp gluster1:/glusterfs/distributed gluster2:/glusterfs/distributed

You will be prompted to okay the creation. Type “y” to allow the creation of the new distributed
volume. Once that succeeds, start the volume with the command:

sudo gluster volume start v01

You can verify the creation with the command:

sudo gluster volume info v01

It’s now time to install the GlusterFS client. We’ll do this on gluster3. For this, issue the command:

sudo apt install glusterfs-client -y

Create a new mount point for GlusterFS on gluster3 with the command:

sudo mkdir -p /mnt/glusterfs

We can now mount the distributed file system with the command:

sudo mount -t glusterfs gluster1:/v01 /mnt/glusterfs/

Creating a Distributed Volume

Installing the GlusterFS Client and
Connecting to the Distributed
Volume

Finally, you’ll want to make sure the distributed file system is mounted at boot. To do this, you’ll
need to edit the fstab file with the command:

sudo nano /etc/fstab

At the bottom of that file, add the following:

gluster1:/v01 /mnt/glusterfs glusterfs defaults,_netdev 0 0

With all of this in place, we can now test the GlusterFS distributed file system. On gluster1 issue
the command:

sudo mount -t glusterfs gluster1:/v01 /mnt

On gluster2 issue the command:

sudo mount -t glusterfs gluster2:/v01 /mnt

Move over to gluster3 and create a test file with the command:

sudo touch /mnt/glusterfs/thenewstack

Check to make sure the new file appears on both gluster1 and gluster2 with the command (run on
gluster1 and gluster2):

ls /mnt

You should see thenewstack appear in both directories on gluster1 and gluster2 (Figure 2).

Testing the Filesystem

https://cdn.thenewstack.io/media/2020/11/576b4cdf-gluster2.jpg

 Zoom
Figure 2: The test file has appeared on gluster1.

And there you go, you now have a GlusterFS distributed file system up and running. You should
now be able to integrate this into anything that requires a high-volume file system that offers
plenty of features that can satisfy many of your cloud and container needs.

Tutorial: Set up Cloud Storage on a Linux Server, Using Seafile

Tutorial: Create a Docker Swarm with Persistent Storage Using GlusterFS

Tutorial: Dynamic Provisioning of Persistent Storage in Kubernetes with MiniKube

More Storage Tutorials

https://cdn.thenewstack.io/media/2020/11/576b4cdf-gluster2.jpg
https://thenewstack.io/tutorial-set-up-cloud-storage-on-a-linux-server-using-seafile/
https://thenewstack.io/tutorial-create-a-docker-swarm-with-persistent-storage-using-glusterfs/
https://thenewstack.io/tutorial-dynamic-provisioning-of-persistent-storage-in-kubernetes-with-minikube/

Link: https://florianmuller.com/setup-a-scalable-high-availability-glusterfs-network-filesystem-with-
docker-swarm-on-ubuntu-server-20-04-lts

In this quick guide we are going to setup the scalable GlusterFS filesystem for a four node Docker
Swarm cluster on Ubuntu 20.04 LTS. More precise: we replace an existing persistent NFS storage
on the cluster with the new GlusterFS and make it available under the same old mount point as the
old NFS. Therefore we can easily redeploy all of our containers from our docker-compose files,
without changing anything. Lets get started!

First we ssh into our master node of our docker swarm, in our case pi-cluster-1 . There we update
our repos and install GlusterFS together with its necessary dependencies:

Now finish and start the GlusterFS service:

Amazing! Now repeat these install steps on ALL 3 remaining nodes!

Setup a scalable high
availability GlusterFS
network filesystem with
Docker Swarm on Ubuntu
Server 20.04 LTS

Install GlusterFS

sudo apt update && sudo apt install software-properties-common glusterfs-server -y

sudo systemctl start glusterd
sudo systemctl enable glusterd

https://florianmuller.com/setup-a-scalable-high-availability-glusterfs-network-filesystem-with-docker-swarm-on-ubuntu-server-20-04-lts
https://florianmuller.com/setup-a-scalable-high-availability-glusterfs-network-filesystem-with-docker-swarm-on-ubuntu-server-20-04-lts

If you are using a firewall on your ubuntu nodes, which I highly recommend, you need to open
some ports to give GlusterFS a chance to communicate with the nodes. In our case we are using
the built in ufw, but we are NOT adding the standard ports itself, as glusterfs is
generating new ports per bricks on a glusterfs volume, that can give you lots of
problems later on.

Instead we are allowing on every node explicitly the other nodes to be incoming traffic without
restrictions, so you do not need to worry about future port changes by glusterfs. Add the
following rules ONLY on the cluster they are meant for. not on any others (replace with
your cluster IP addresses):

Repeat these firewall steps on ALL 3 remaining nodes, and use the rules applying to the
node!

If, and only IF, you run into any issues (which you shouldn't) with glusterfs access or syncing or you
get a split brain, than check out the specific ports per cluster as well, and see if you might need
them. These are the glusterfs standard ports from their documentation:

Prepare ufw firewall (if set):

#cluster1 (192.168.0.1)
sudo ufw allow proto any from 192.168.0.2 to 192.168.0.1
sudo ufw allow proto any from 192.168.0.3 to 192.168.0.1
sudo ufw allow proto any from 192.168.0.4 to 192.168.0.1

#cluster2 (192.168.0.2)
sudo ufw allow proto any from 192.168.0.1 to 192.168.0.2
sudo ufw allow proto any from 192.168.0.3 to 192.168.0.2
sudo ufw allow proto any from 192.168.0.4 to 192.168.0.2

#cluster3 (192.168.0.3)
sudo ufw allow proto any from 192.168.0.1 to 192.168.0.3
sudo ufw allow proto any from 192.168.0.2 to 192.168.0.3
sudo ufw allow proto any from 192.168.0.4 to 192.168.0.3

#cluster4 (192.168.0.4)
sudo ufw allow proto any from 192.168.0.1 to 192.168.0.4
sudo ufw allow proto any from 192.168.0.2 to 192.168.0.4
sudo ufw allow proto any from 192.168.0.3 to 192.168.0.4

Now we’re going to have Gluster probe all of the nodes. This will be done from the master
node. I’m going to stick with my example of four nodes, which are these hostnames:
pi-cluster-1
pi-cluster-2

pi-cluster-3
pi-cluster-4
Before you issue the command, you’ll need to change to the superuser with:

For some reason in my case the hostnames did not work and I had to use the local IP address of my
nodes. So if you get a connection error from GlusterFS while probing, use the local IP address
instead.

If you use hostnames probe like this (replace with YOUR nodes hostnames):

When you want to use hostnames (recommended) and you get an error at first, try to lookup and
set your hostnames in /etc/hosts on each cluster:

Edit the host file like this, but remember to replace with your cluster nodes IP addresses:

#glusterfs
111 (portmapper)
24007/tcp
24008/tcp
49152 – 49155

Probe and connect the nodes to
GlusterFS:

sudo -s

gluster peer probe pi-cluster-1; gluster peer probe pi-cluster-2; gluster peer probe pi-cluster-3; gluster peer
probe pi-cluster-4;

sudo nano /etc/hosts

127.0.0.1 localhost
192.168.0.1 pi-cluster-1
192.168.0.2 pi-cluster-2
192.168.0.3 pi-cluster-3

If you still have issues probing, you can also use direct local IP addresses (not recommended, but
works) probe like this (replace with YOUR nodes IP addresses):

Great! Now you have successfully added the nodes to each other in Gluster. To verify your Gluster
pool, type this on the Master node:

If you get a list of your nodes you are good to go and should exit the superuser mode with:

Now we create our GlusterFS volume mount point. I called mine dockerfiles, you can choose
whatever you want here:

You need to run and create this mount point on ALL nodes and machines!

Once done, you can create the volume across the cluster with this command (run only once on
the master):

If you used hostnames before:

If you used IP addresses before:

192.168.0.4 pi-cluster-4

gluster peer probe 192.168.0.1; gluster peer probe 192.168.0.2; gluster peer probe 192.168.0.3; gluster peer
probe 192.168.0.4;

gluster pool list

exit

Create the GlusterFS Volume on
your drives:

sudo mkdir -p /gluster/dockerfiles

sudo gluster volume create staging-gfs replica 4 pi-cluster-1:/gluster/dockerfiles pi-cluster-2:/gluster/dockerfiles
pi-cluster-3:/gluster/dockerfiles pi-cluster-4:/gluster/dockerfiles force

sudo gluster volume create staging-gfs replica 4 192.168.0.1:/gluster/dockerfiles 192.168.0.2:/gluster/dockerfiles
192.168.0.3:/gluster/dockerfiles 192.168.0.4:/gluster/dockerfiles force

Startup the Gluster volume with (on the master node only):

The volume is now up and running, but we need to make sure the volume will mount on the same
mount point as our old NFS storage. We also need to migrate our container data from the prior NFS
storage to the new glusterFS volume first.

Create the directory where we will have our shared GlusterFS volume mounted to.
IMPORTANT if you migrate from NFS: This should be a temporary name first, as we copy
back and forth from it. So for our case where we migrate we create a temporary mount
point with:

Next we mount our GlusterFS volume to it:

Perfect! Now we copy and migrate our docker container data over to GlusterFS.
IMPORTANT: If you have write sensitive data/services, you need to stop and remove
first all our stacks and services. Get a list of what running on your stack with: docker
stack ls

Now lets copy our existing NFS docker data from our actual docker used shared volume
/mnt/docker to our temp GlusterFS mount point:

This may take a while, but once finished you should have all your actuall container data under
/mnt/tempdockerfiles as well. You can verify this with: ls -l /mnt/tempdockerfiles

Once you are sure all data has been copied, we unmount our NFS storage volume and our
GlusterFS with. Run the following commands on ALL FOUR NODES:

sudo gluster volume start staging-gfs

Migrate container data from NFS:

#if not exists:
sudo mkdir -p /mnt/docker
sudo mkdir -p /mnt/tempdockerfiles

sudo mount.glusterfs localhost:/staging-gfs /mnt/tempdockerfiles

sudo cp -a /mnt/docker/. /mnt/tempdockerfiles/

sudo umount /mnt/docker/
sudo umount /mnt/tempdockerfiles/

Make sure they are unmounted with ls -l /mnt/tempdockerfiles/ that should give you an empty result
(0 files).

As we have copied our docker data to the GlusterFS volume we can also delete the temporary
mount point now (run on all nodes):

Now we mount the GlusterFS volume in the old mount point of our prior NFS storage (run on all
nodes):

Verify with ls -l /mnt/docker and you should see all your old docker container data again. last but not
least we need to set the permissions right on the volume and make the mount persistent over a
reboot (or other circumstances):

Set permissions (on all nodes):

Add mount point to /etc/fstab (on all nodes):

Important: If you had an old entry in /etc/fstab from auto mounting your NFS shared
volume on boot to /mnt/docker, you need to remove that line from fstab now as well.
(on all nodes)

Now reboot ALL NODES with:

After the reboot you can verify if the GlusterFS volume is mounted correctly on your nodes with:

Great! Thats it, you successfully installed GlusterFS on your Docker Swarm cluster and migrated all
your container data from the NFS shared volume over the the Gluster volume!

rm -R /mnt/tempdockerfiles/

sudo mount.glusterfs localhost:/staging-gfs /mnt/docker

replace ubuntu with your username

sudo chown -R ubuntu:ubuntu /mnt/docker/
sudo chown root:docker /mnt/docker/

echo 'localhost:/staging-gfs /mnt/docker glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >>
/etc/fstab

sudo reboot now

df -h

If you at any point need to fully uninstall and remove glusterfs from all your nodes, you should to
the following on all nodes:

After that you should restart each node and you are back to a state where you could reinstall
glusterfs fresh.

Published by Florian Müller in Development, Technology
Tags: docker, docker swarm, docker-compose, filesystem, gluster, glusterfs, ssh, terminal, ubuntu

Appendix: Complete uninstall
glusterfs

#enter root
sudo -s

gluster volume stop staging-gfs
gluster volume delete staging-gfs

gluster peer detach 192.168.0.4
gluster peer detach 192.168.0.3
gluster peer detach 192.168.0.2
gluster peer detach 192.168.0.1

apt --purge remove glusterfs-server -y
apt autoremove -y

rm -rf /gluster/
rm -rf /var/log/glusterfs/
rm -rf /var/lib/glusterd/
rm -rf /run/gluster/
rm -rf /usr/lib/python3/dist-packages/gluster/

#Remove nano /etc/fstab boot mount entry for gluster:
nano /etc/fstab

#Remove all firewall rules as above:
ufw delete <position count of your rule in ufw status>

https://florianmuller.com/topic/development
https://florianmuller.com/topic/technology
https://florianmuller.com/keyword/docker
https://florianmuller.com/keyword/docker-swarm
https://florianmuller.com/keyword/docker-compose
https://florianmuller.com/keyword/filesystem
https://florianmuller.com/keyword/gluster
https://florianmuller.com/keyword/glusterfs
https://florianmuller.com/keyword/ssh
https://florianmuller.com/keyword/terminal
https://florianmuller.com/keyword/ubuntu

Link: https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-
glusterfs-and-docker-swarm-b4ff80c6b5c3

Published in Oct 28, 2018

Setup Highly Available
applications with Docker
Swarm and Gluster

https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-glusterfs-and-docker-swarm-b4ff80c6b5c3
https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-glusterfs-and-docker-swarm-b4ff80c6b5c3

Docker Swarm cluster with shared glusterFS replicated volume for HA

A good design pattern for highly available applications is to deploy the application as a container
on a Docker Swarm cluster with persistent storage provided by GlusterFS. GlusterFS is a fast
shared filesystem that can keep the container volume in sync between multiple VMs running the
Docker Swarm cluster. This pattern ensures high availability for your containerised application. In
the event a VM dies, Docker Swarm will spin up the container on another VM. GlusterFS will ensure
the container has access to the same data when it comes up.

In this tutorial, we’ll look at setting up GlusterFS on 3 VMs and create a replicated volume with a
replication factor of 3. Later we’ll install Docker Swarm over these three VMs. Goal is to use
GlusterFS to provide persistent storage to your application container, and docker swarm for high
availability.

For the setup, first we’ll need three Ubuntu Gluster VMs, each with 2 disks attached. We’ll use the
first disk to run the OS, and the second as the GlusterFS replicated volume. Create three VMs with
two disks. In my case, my VMs had the root volume on /dev/vda and the second disk on /dev/vdc .
Create three VMs and let’s assume the private IPs of these VMs are 192.168.2.100, 192.168.2.101,
192.168.2.102 , and their hostnames are gluster1, gluster2, gluster3 .

Note: All commands are being executed as root user (hence the # at the beginning)

Update the /etc/hosts files on each VM to reflect the private IPs of each VM. This is important for
GlusterFS, and you may encounter bugs or issues if you give private IPs directly to Gluster
volumes. After editing the files should look like:

Format the disks with xfs filesystem on each VM in case you haven’t already. You can also use ext4
if you prefer.

1. Plan and setup the
infrastructure

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 30G 0 disk
└─vda1 253:1 0 30G 0 part /
vdb 253:16 0 64M 0 disk
vdc 253:32 0 10G 0 disk

(gluster1)# cat /etc/hosts
127.0.0.1 localhost
192.168.2.100 gluster1
192.168.2.101 gluster2
192.168.2.102 gluster3(gluster2)# cat /etc/hosts
127.0.0.1 localhost
192.168.2.100 gluster1
192.168.2.101 gluster2
192.168.2.102 gluster3(gluster3)# cat /etc/hosts
127.0.0.1 localhost
192.168.2.100 gluster1
192.168.2.101 gluster2
192.168.2.102 gluster3

mkfs.xfs /dev/vdc

Setup the glusterFS directories where the gluster “bricks” will reside. Better to name them
differently so it’s easy to identify on which node the replicated volumes reside. Also add an entry to
your /etc/fstab file on each VM so that our brick gets mounted when the operating system boots or
restarts.

Install GlusterFS on all VMs by executing following commands on each VM:

Now peer with other nodes from gluster1:

2. Create directories for
GlusterFS storage

(gluster1)# mkdir -p /gluster/bricks/1
(gluster1)# echo '/dev/vdc /gluster/bricks/1 xfs defaults 0 0' >> /etc/fstab
(gluster1)# mount -a
(gluster1)# mkdir /gluster/bricks/1/brick(gluster2)# mkdir -p /gluster/bricks/2
(gluster2)# echo '/dev/vdc /gluster/bricks/2 xfs defaults 0 0' >> /etc/fstab
(gluster2)# mount -a
(gluster2)# mkdir /gluster/bricks/2/brick(gluster3)# mkdir -p /gluster/bricks/3
(gluster3)# echo '/dev/vdc /gluster/bricks/3 xfs defaults 0 0' >> /etc/fstab
(gluster3)# mount -a
(gluster3)# mkdir /gluster/bricks/3/brick

3. Install GlusterFS
apt-get -y update && apt-get -y upgrade
apt-get install -y software-properties-common
add-apt-repository ppa:gluster/glusterfs-6 && apt-get update # Use the latest glusterFS version instead of 6, which was the latest at the time of writing this tutorial
apt-get install -y glusterfs-server
systemctl enable glusterd # automatically start glusterfs on boot
systemctl start glusterd # start glusterfs right now
systemctl status glusterd # Should show status active

4. Peer with other Gluster
VMs

GlusterFS has multiple volume types. For our HA architecture, we want to setup a “replicated”
volume that stores the files created on each of the 3 VMs and hence the file is available to any app
or container running on these VMs. Create the replicated volume named “gfs” with 3 replicas:

(gluster1)# gluster peer probe gluster2
peer probe: success.
(gluster1)# gluster peer probe gluster3
peer probe: success.
(gluster1)# gluster peer status
Number of Peers: 2Hostname: gluster2
Uuid: 60861905-6adc-4841-8f82-216c661f9fe2
State: Peer in Cluster (Connected)Hostname: gluster3
Uuid: 572fed90-61de-40dd-97a6-4255ed8744ce
State: Peer in Cluster (Connected)

5. Setup the Gluster
“replicated volume”

(gluster1)# gluster volume create gfs \
replica 3 \
gluster1:/gluster/bricks/1/brick \
gluster2:/gluster/bricks/2/brick \
gluster3:/gluster/bricks/3/brickvolume create: gfs: success: please start the volume to access data(gluster1)# gluster volume start gfs
(gluster1)# gluster volume status gfsStatus of volume: gfs
Gluster process TCP Port RDMA Port Online Pid
--
Brick gluster1:/gluster/bricks/1/brick 49152 0 Y 4619
Brick gluster2:/gluster/bricks/2/brick 49152 0 Y 4504
Brick gluster3:/gluster/bricks/3/brick 49152 0 Y 4306
Self-heal Daemon on localhost N/A N/A Y 4641
Self-heal Daemon on gluster2 N/A N/A Y 4526
Self-heal Daemon on gluster3 N/A N/A Y 4328Task Status of Volume gfs
--
There are no active volume tasks(gluster1)# gluster volume info gfsVolume Name: gfs
Type: Replicate
Volume ID: 703e46cb-a637-4620-adfa-6b292a15e0d5
Status: Started
Snapshot Count: 0
Number of Bricks: 1 x 3 = 3
Transport-type: tcp
Bricks:
Brick1: gluster1:/gluster/bricks/1/brick
Brick2: gluster2:/gluster/bricks/2/brick
Brick3: gluster3:/gluster/bricks/3/brick
Options Reconfigured:

https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/

GlusterFS will allow any clients to connect to volumes by default. However, you will need to
authorize the three infra VMs running GlusterFS to connect to the GlusterFS Volumes on each node.
You can do it by authorizing the private IPs of each VM to connect to the volume. This will allow
replication to happen. Execute:

We’ll mount the volume onto /mnt on each VM, and also append it to our /etc/fstab file so that it
mounts on boot:

transport.address-family: inet
nfs.disable: on
performance.client-io-threads: off

6. Setup security and
authentication for this
volume

(gluster1)# gluster volume set gfs auth.allow 192.168.2.100,192.168.2.101,192.168.2.102

7. Mount the glusterFS
volume where applications
can access the files

(gluster1)# echo 'localhost:/gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab
(gluster1)# mount.glusterfs localhost:/gfs /mnt(gluster2)# echo 'localhost:/gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab
(gluster2)# mount.glusterfs localhost:/gfs /mnt(gluster3)# echo 'localhost:/gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab
(gluster3)# mount.glusterfs localhost:/gfs /mnt

8. Verify

Verify mounted glusterfs volume:

The total space available on the volume comes up as 10G even though we have 3 disks of 10G
each connected to GlusterFS. This is due to our replication factor of 3. Total volume size is 30G, but
with a replication factor or 3 for each file only 10G is available to us.

Test GlusterFS replication:

Now let’s setup the Docker Swarm cluster with the gluster VMs (gluster1/2/3) as the workers, and a
new VM (swarm-manger) as the Swarm manager. We’ll use our gluster replicated volume to
achieve High Availability for our stateful containerized application. We’ll test with Wordpress.

All commands executed as root.

Install docker-ce on all four VMs (swarm-manager, gluster1/2/3) using the instructions given here:
https://docs.docker.com/install/linux/docker-ce/ubuntu/ (I feel it’s redundant to repeat the standard
instructions).

df -Th
Filesystem Type Size Used Avail Use% Mounted on
udev devtmpfs 7.9G 0 7.9G 0% /dev
tmpfs tmpfs 1.6G 17M 1.6G 2% /run
/dev/vda1 ext4 30G 2.1G 27G 8% /
tmpfs tmpfs 7.9G 12K 7.9G 1% /dev/shm
tmpfs tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs tmpfs 7.9G 0 7.9G 0% /sys/fs/cgroup
tmpfs tmpfs 1.6G 0 1.6G 0% /run/user/1001
/dev/vdb xfs 10G 33M 10G 1% /gluster/bricks/1
localhost:/gfs fuse.glusterfs 10G 135M 10G 2% /mnt

(gluster1)# echo "Hello World!" | sudo tee /mnt/test.txt(gluster2)# cat /mnt/test.txt
Hello World!(gluster3)# cat /mnt/test.txt
Hello World!

Part 2: Setup Docker Swarm

1. Setup Docker community
edition on all VMs

https://docs.docker.com/install/linux/docker-ce/ubuntu/

However, after the installation, please do verify if Docker is installed properly by running following
command on all VMs:

We’ll use the swarm-manager’s private IP as the “advertised address”.

docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:92695bc579f31df7a63da6922075d0666e565ceccad16b59c3374d2cf4e8e50e
Status: Downloaded newer image for hello-world:latestHello from Docker!
This message shows that your installation appears to be working correctly.

2. Initialize Docker swarm
from the swarm-manager

swarm-manager:~# docker swarm init --advertise-addr 192.168.2.99
Swarm initialized: current node (sz42o1yjz08t3x98aj82z33pe) is now a manager.To add a worker to this swarm, run the following command:docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

3. Add the three gluster VMs
as swarm workers

gluster1:~# docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377
This node joined a swarm as a worker.gluster2:~# docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377
This node joined a swarm as a worker.gluster3:~# docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377
This node joined a swarm as a worker.swarm-manager:~# docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
qjmuz0n8n770ryougk2tsb37x gluster1 Ready Active 18.09.5
kcwsavrtzhvy038357p51lwl2 gluster2 Ready Active 18.09.5
ifnzgpk25p27y19vslee4v74x gluster3 Ready Active 18.09.5
sz42o1yjz08t3x98aj82z33pe * swarm-manager Ready Active Leader 18.09.5

We’ll use docker stack to setup a single container Wordpress backed by a single container of
MySQL, and then test if this setup is resilient to VM failure.

This stack file exposes wordpress on port 8080 on all swarm nodes, even the swarm-manager
node. It mounts the directories created for wp-content and mysql as volumes on the containers.

Part 3: Test the High
Availability Setup

1. Create replicated
directories for wordpress
and mysql in glusterFS

gluster1:~# mkdir /mnt/wp-content
gluster1:~# mkdir /mnt/mysql

2. Create the wordpress-
stack.yml file

swarm-manager:~# cat wordpress-stack.yml
wordpress-stack.yml
version: '3.1'services: wordpress:
 image: wordpress
 restart: always
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_HOST: db
 WORDPRESS_DB_USER: exampleuser

Check if Wordpress is up by entering http://<any-worker-external-ip>:8080/ in the browser.

 WORDPRESS_DB_PASSWORD: examplepass
 WORDPRESS_DB_NAME: exampledb
 volumes:
 - "/mnt/wp-content:/var/www/html/wp-content"
 deploy:
 placement:
 constraints: [node.role == worker] db:
 image: mysql:5.7
 restart: always
 environment:
 MYSQL_DATABASE: exampledb
 MYSQL_USER: exampleuser
 MYSQL_PASSWORD: examplepass
 MYSQL_RANDOM_ROOT_PASSWORD: '1'
 volumes:
 - "/mnt/mysql:/var/lib/mysql"
 deploy:
 placement:
 constraints: [node.role == worker]

3. Use docker stack to
deploy Wordpress and
MySQL

swarm-manager:~# docker stack deploy -c wordpress-stack.yml wordpress
Ignoring unsupported options: restartCreating network wordpress_default
Creating service wordpress_db
Creating service wordpress_wordpressswarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Running Running 5 minutes ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Running Running 5 minutes ago

Note: 10.147.106.32 was one of my gluster worker VM’s (gluster3) external IP

Go through the install process, choose an admin username and password, and create your first
post.

Check on which VM the Wordpress and MySQL containers are running. We’ll shutdown each VM to
understand whether HA is working properly. In my case, the Wordpress container was running on
gluster1 and MySQL was running on gluster2.

4. Test High Availability by
shutting down a VM

Shutdown gluster1 and check what happens. You’ll find that docker swarm starts a new container
on a new worker VM. The website will continue to work, your data will still be stored, but you’ll
have to login again as the session data is lost with the previous container.

Start the gluster1 VM again and let’s repeat the HA test with MySQL host gluster2. Shutdown
gluster2 which was running the MySQL container. After shutdown, you’ll find docker swarm has
scheduled MySQL on another worker VM.

The website will continue to work without any data loss as the MySQL container would have found
the replicated volume under the same path (/mnt/mysql).

Add the three worker VM IPs with port behind a Load Balancer (like AWS ELB) and voilà, A Highly
Available stateful deployment on Docker Swarm using GlusterFS.

swarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Running Running 24 minutes ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Running Running 24 minutes ago

swarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
u8s93kowj2mx wordpress_wordpress.1 wordpress:latest gluster3 Running Running 3 seconds ago
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Running Running 28 minutes ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Shutdown Running about a minute ago

swarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
px90rs5q22ei wordpress_db.1 mysql:5.7 gluster1 Running Preparing 41 seconds ago
u8s93kowj2mx wordpress_wordpress.1 wordpress:latest gluster3 Running Running 6 minutes ago
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Shutdown Running 50 seconds ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Shutdown Shutdown 3 minutes ago

