
Link: https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-
glusterfs-and-docker-swarm-b4ff80c6b5c3

Published in Oct 28, 2018

Setup Highly Available
applications with Docker
Swarm and Gluster

https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-glusterfs-and-docker-swarm-b4ff80c6b5c3
https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-glusterfs-and-docker-swarm-b4ff80c6b5c3

Docker Swarm cluster with shared glusterFS replicated volume for HA

A good design pattern for highly available applications is to deploy the application as a container
on a Docker Swarm cluster with persistent storage provided by GlusterFS. GlusterFS is a fast
shared filesystem that can keep the container volume in sync between multiple VMs running the
Docker Swarm cluster. This pattern ensures high availability for your containerised application. In
the event a VM dies, Docker Swarm will spin up the container on another VM. GlusterFS will ensure
the container has access to the same data when it comes up.

In this tutorial, we’ll look at setting up GlusterFS on 3 VMs and create a replicated volume with a
replication factor of 3. Later we’ll install Docker Swarm over these three VMs. Goal is to use
GlusterFS to provide persistent storage to your application container, and docker swarm for high
availability.

For the setup, first we’ll need three Ubuntu Gluster VMs, each with 2 disks attached. We’ll use the
first disk to run the OS, and the second as the GlusterFS replicated volume. Create three VMs with
two disks. In my case, my VMs had the root volume on /dev/vda and the second disk on /dev/vdc .
Create three VMs and let’s assume the private IPs of these VMs are 192.168.2.100, 192.168.2.101,
192.168.2.102 , and their hostnames are gluster1, gluster2, gluster3 .

Note: All commands are being executed as root user (hence the # at the beginning)

Update the /etc/hosts files on each VM to reflect the private IPs of each VM. This is important for
GlusterFS, and you may encounter bugs or issues if you give private IPs directly to Gluster
volumes. After editing the files should look like:

Format the disks with xfs filesystem on each VM in case you haven’t already. You can also use ext4
if you prefer.

1. Plan and setup the
infrastructure

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 30G 0 disk
└─vda1 253:1 0 30G 0 part /
vdb 253:16 0 64M 0 disk
vdc 253:32 0 10G 0 disk

(gluster1)# cat /etc/hosts
127.0.0.1 localhost
192.168.2.100 gluster1
192.168.2.101 gluster2
192.168.2.102 gluster3(gluster2)# cat /etc/hosts
127.0.0.1 localhost
192.168.2.100 gluster1
192.168.2.101 gluster2
192.168.2.102 gluster3(gluster3)# cat /etc/hosts
127.0.0.1 localhost
192.168.2.100 gluster1
192.168.2.101 gluster2
192.168.2.102 gluster3

mkfs.xfs /dev/vdc

Setup the glusterFS directories where the gluster “bricks” will reside. Better to name them
differently so it’s easy to identify on which node the replicated volumes reside. Also add an entry to
your /etc/fstab file on each VM so that our brick gets mounted when the operating system boots or
restarts.

Install GlusterFS on all VMs by executing following commands on each VM:

Now peer with other nodes from gluster1:

2. Create directories for
GlusterFS storage

(gluster1)# mkdir -p /gluster/bricks/1
(gluster1)# echo '/dev/vdc /gluster/bricks/1 xfs defaults 0 0' >> /etc/fstab
(gluster1)# mount -a
(gluster1)# mkdir /gluster/bricks/1/brick(gluster2)# mkdir -p /gluster/bricks/2
(gluster2)# echo '/dev/vdc /gluster/bricks/2 xfs defaults 0 0' >> /etc/fstab
(gluster2)# mount -a
(gluster2)# mkdir /gluster/bricks/2/brick(gluster3)# mkdir -p /gluster/bricks/3
(gluster3)# echo '/dev/vdc /gluster/bricks/3 xfs defaults 0 0' >> /etc/fstab
(gluster3)# mount -a
(gluster3)# mkdir /gluster/bricks/3/brick

3. Install GlusterFS
apt-get -y update && apt-get -y upgrade
apt-get install -y software-properties-common
add-apt-repository ppa:gluster/glusterfs-6 && apt-get update # Use the latest glusterFS version instead of 6, which was the latest at the time of writing this tutorial
apt-get install -y glusterfs-server
systemctl enable glusterd # automatically start glusterfs on boot
systemctl start glusterd # start glusterfs right now
systemctl status glusterd # Should show status active

4. Peer with other Gluster
VMs

GlusterFS has multiple volume types. For our HA architecture, we want to setup a “replicated”
volume that stores the files created on each of the 3 VMs and hence the file is available to any app
or container running on these VMs. Create the replicated volume named “gfs” with 3 replicas:

(gluster1)# gluster peer probe gluster2
peer probe: success.
(gluster1)# gluster peer probe gluster3
peer probe: success.
(gluster1)# gluster peer status
Number of Peers: 2Hostname: gluster2
Uuid: 60861905-6adc-4841-8f82-216c661f9fe2
State: Peer in Cluster (Connected)Hostname: gluster3
Uuid: 572fed90-61de-40dd-97a6-4255ed8744ce
State: Peer in Cluster (Connected)

5. Setup the Gluster
“replicated volume”

(gluster1)# gluster volume create gfs \
replica 3 \
gluster1:/gluster/bricks/1/brick \
gluster2:/gluster/bricks/2/brick \
gluster3:/gluster/bricks/3/brickvolume create: gfs: success: please start the volume to access data(gluster1)# gluster volume start gfs
(gluster1)# gluster volume status gfsStatus of volume: gfs
Gluster process TCP Port RDMA Port Online Pid
--
Brick gluster1:/gluster/bricks/1/brick 49152 0 Y 4619
Brick gluster2:/gluster/bricks/2/brick 49152 0 Y 4504
Brick gluster3:/gluster/bricks/3/brick 49152 0 Y 4306
Self-heal Daemon on localhost N/A N/A Y 4641
Self-heal Daemon on gluster2 N/A N/A Y 4526
Self-heal Daemon on gluster3 N/A N/A Y 4328Task Status of Volume gfs
--
There are no active volume tasks(gluster1)# gluster volume info gfsVolume Name: gfs
Type: Replicate
Volume ID: 703e46cb-a637-4620-adfa-6b292a15e0d5
Status: Started
Snapshot Count: 0
Number of Bricks: 1 x 3 = 3
Transport-type: tcp
Bricks:
Brick1: gluster1:/gluster/bricks/1/brick
Brick2: gluster2:/gluster/bricks/2/brick
Brick3: gluster3:/gluster/bricks/3/brick
Options Reconfigured:

https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/

GlusterFS will allow any clients to connect to volumes by default. However, you will need to
authorize the three infra VMs running GlusterFS to connect to the GlusterFS Volumes on each node.
You can do it by authorizing the private IPs of each VM to connect to the volume. This will allow
replication to happen. Execute:

We’ll mount the volume onto /mnt on each VM, and also append it to our /etc/fstab file so that it
mounts on boot:

transport.address-family: inet
nfs.disable: on
performance.client-io-threads: off

6. Setup security and
authentication for this
volume

(gluster1)# gluster volume set gfs auth.allow 192.168.2.100,192.168.2.101,192.168.2.102

7. Mount the glusterFS
volume where applications
can access the files

(gluster1)# echo 'localhost:/gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab
(gluster1)# mount.glusterfs localhost:/gfs /mnt(gluster2)# echo 'localhost:/gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab
(gluster2)# mount.glusterfs localhost:/gfs /mnt(gluster3)# echo 'localhost:/gfs /mnt glusterfs defaults,_netdev,backupvolfile-server=localhost 0 0' >> /etc/fstab
(gluster3)# mount.glusterfs localhost:/gfs /mnt

8. Verify

Verify mounted glusterfs volume:

The total space available on the volume comes up as 10G even though we have 3 disks of 10G
each connected to GlusterFS. This is due to our replication factor of 3. Total volume size is 30G, but
with a replication factor or 3 for each file only 10G is available to us.

Test GlusterFS replication:

Now let’s setup the Docker Swarm cluster with the gluster VMs (gluster1/2/3) as the workers, and a
new VM (swarm-manger) as the Swarm manager. We’ll use our gluster replicated volume to
achieve High Availability for our stateful containerized application. We’ll test with Wordpress.

All commands executed as root.

Install docker-ce on all four VMs (swarm-manager, gluster1/2/3) using the instructions given here:
https://docs.docker.com/install/linux/docker-ce/ubuntu/ (I feel it’s redundant to repeat the standard
instructions).

df -Th
Filesystem Type Size Used Avail Use% Mounted on
udev devtmpfs 7.9G 0 7.9G 0% /dev
tmpfs tmpfs 1.6G 17M 1.6G 2% /run
/dev/vda1 ext4 30G 2.1G 27G 8% /
tmpfs tmpfs 7.9G 12K 7.9G 1% /dev/shm
tmpfs tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs tmpfs 7.9G 0 7.9G 0% /sys/fs/cgroup
tmpfs tmpfs 1.6G 0 1.6G 0% /run/user/1001
/dev/vdb xfs 10G 33M 10G 1% /gluster/bricks/1
localhost:/gfs fuse.glusterfs 10G 135M 10G 2% /mnt

(gluster1)# echo "Hello World!" | sudo tee /mnt/test.txt(gluster2)# cat /mnt/test.txt
Hello World!(gluster3)# cat /mnt/test.txt
Hello World!

Part 2: Setup Docker Swarm

1. Setup Docker community
edition on all VMs

https://docs.docker.com/install/linux/docker-ce/ubuntu/

However, after the installation, please do verify if Docker is installed properly by running following
command on all VMs:

We’ll use the swarm-manager’s private IP as the “advertised address”.

docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:92695bc579f31df7a63da6922075d0666e565ceccad16b59c3374d2cf4e8e50e
Status: Downloaded newer image for hello-world:latestHello from Docker!
This message shows that your installation appears to be working correctly.

2. Initialize Docker swarm
from the swarm-manager

swarm-manager:~# docker swarm init --advertise-addr 192.168.2.99
Swarm initialized: current node (sz42o1yjz08t3x98aj82z33pe) is now a manager.To add a worker to this swarm, run the following command:docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

3. Add the three gluster VMs
as swarm workers

gluster1:~# docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377
This node joined a swarm as a worker.gluster2:~# docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377
This node joined a swarm as a worker.gluster3:~# docker swarm join --token SWMTKN-1-3gi2wi4o22nyiqij3io055na7wt0201oamaegykllea0t5vi5k-2qjld08v7ouzax6gzw15dw2ab 192.168.2.99:2377
This node joined a swarm as a worker.swarm-manager:~# docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
qjmuz0n8n770ryougk2tsb37x gluster1 Ready Active 18.09.5
kcwsavrtzhvy038357p51lwl2 gluster2 Ready Active 18.09.5
ifnzgpk25p27y19vslee4v74x gluster3 Ready Active 18.09.5
sz42o1yjz08t3x98aj82z33pe * swarm-manager Ready Active Leader 18.09.5

We’ll use docker stack to setup a single container Wordpress backed by a single container of
MySQL, and then test if this setup is resilient to VM failure.

This stack file exposes wordpress on port 8080 on all swarm nodes, even the swarm-manager
node. It mounts the directories created for wp-content and mysql as volumes on the containers.

Part 3: Test the High
Availability Setup

1. Create replicated
directories for wordpress
and mysql in glusterFS

gluster1:~# mkdir /mnt/wp-content
gluster1:~# mkdir /mnt/mysql

2. Create the wordpress-
stack.yml file

swarm-manager:~# cat wordpress-stack.yml
wordpress-stack.yml
version: '3.1'services: wordpress:
 image: wordpress
 restart: always
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_HOST: db
 WORDPRESS_DB_USER: exampleuser

Check if Wordpress is up by entering http://<any-worker-external-ip>:8080/ in the browser.

 WORDPRESS_DB_PASSWORD: examplepass
 WORDPRESS_DB_NAME: exampledb
 volumes:
 - "/mnt/wp-content:/var/www/html/wp-content"
 deploy:
 placement:
 constraints: [node.role == worker] db:
 image: mysql:5.7
 restart: always
 environment:
 MYSQL_DATABASE: exampledb
 MYSQL_USER: exampleuser
 MYSQL_PASSWORD: examplepass
 MYSQL_RANDOM_ROOT_PASSWORD: '1'
 volumes:
 - "/mnt/mysql:/var/lib/mysql"
 deploy:
 placement:
 constraints: [node.role == worker]

3. Use docker stack to
deploy Wordpress and
MySQL

swarm-manager:~# docker stack deploy -c wordpress-stack.yml wordpress
Ignoring unsupported options: restartCreating network wordpress_default
Creating service wordpress_db
Creating service wordpress_wordpressswarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Running Running 5 minutes ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Running Running 5 minutes ago

Note: 10.147.106.32 was one of my gluster worker VM’s (gluster3) external IP

Go through the install process, choose an admin username and password, and create your first
post.

Check on which VM the Wordpress and MySQL containers are running. We’ll shutdown each VM to
understand whether HA is working properly. In my case, the Wordpress container was running on
gluster1 and MySQL was running on gluster2.

4. Test High Availability by
shutting down a VM

Shutdown gluster1 and check what happens. You’ll find that docker swarm starts a new container
on a new worker VM. The website will continue to work, your data will still be stored, but you’ll
have to login again as the session data is lost with the previous container.

Start the gluster1 VM again and let’s repeat the HA test with MySQL host gluster2. Shutdown
gluster2 which was running the MySQL container. After shutdown, you’ll find docker swarm has
scheduled MySQL on another worker VM.

The website will continue to work without any data loss as the MySQL container would have found
the replicated volume under the same path (/mnt/mysql).

Add the three worker VM IPs with port behind a Load Balancer (like AWS ELB) and voilà, A Highly
Available stateful deployment on Docker Swarm using GlusterFS.

swarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Running Running 24 minutes ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Running Running 24 minutes ago

swarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
u8s93kowj2mx wordpress_wordpress.1 wordpress:latest gluster3 Running Running 3 seconds ago
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Running Running 28 minutes ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Shutdown Running about a minute ago

swarm-manager:~# docker stack ps wordpress
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
px90rs5q22ei wordpress_db.1 mysql:5.7 gluster1 Running Preparing 41 seconds ago
u8s93kowj2mx wordpress_wordpress.1 wordpress:latest gluster3 Running Running 6 minutes ago
x5vvrt6ohko2 wordpress_db.1 mysql:5.7 gluster2 Shutdown Running 50 seconds ago
idree9r7qlxb wordpress_wordpress.1 wordpress:latest gluster1 Shutdown Shutdown 3 minutes ago

Revision #1
Created 8 July 2024 10:24:33 by Administrador
Updated 8 July 2024 10:27:53 by Administrador

