
Link: https://medium.com/@yahyasghiouri1998/building-a-high-availability-cluster-with-haproxy-
keepalived-and-docker-a-step-by-step-guide-9325f4ac8aa7

·Aug 30, 2024

Building a High Availability
Cluster with HAProxy,
Keepalived, and Docker: A Step-
by-Step Guide

https://medium.com/@yahyasghiouri1998/building-a-high-availability-cluster-with-haproxy-keepalived-and-docker-a-step-by-step-guide-9325f4ac8aa7
https://medium.com/@yahyasghiouri1998/building-a-high-availability-cluster-with-haproxy-keepalived-and-docker-a-step-by-step-guide-9325f4ac8aa7
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fp%2F9325f4ac8aa7&operation=register&redirect=https%3A%2F%2Fmedium.com%2F%40yahyasghiouri1998%2Fbuilding-a-high-availability-cluster-with-haproxy-keepalived-and-docker-a-step-by-step-guide-9325f4ac8aa7&user=Yahya+sghiouri&userId=926c8b21d31f&source=---header_actions--9325f4ac8aa7---------------------clap_footer------------------

High availability

High availability (HA) is essential for ensuring that web applications remain accessible, even in the
face of hardware or software failures. An HA architecture distributes traffic across multiple servers,
preventing any single point of failure from disrupting service. In this article, we’ll explore how to
build a high availability cluster using HAProxy and Keepalived, two powerful tools for load balancing
and failover.

To enhance flexibility and simplify deployment, we’ll leverage Docker to containerize HAProxy,
Keepalived, and our web applications. Docker allows us to create a portable and easily manageable
HA setup that can be deployed across different environments, whether on-premises or in the cloud.

Throughout this guide, we’ll walk you through the entire process — from setting up Docker
networks and building Dockerfiles to configuring HAProxy and Keepalived for seamless failover. By
the end, you’ll have a fully functional HA cluster that ensures your web applications are always
available, all within a Dockerized environment.

Before diving into the different configurations, it’s helpful to understand the core components of
the architecture.

HAProxy, as its name suggests, stands for High Availability Proxy. It is a robust and versatile tool
designed to provide high availability and efficient load balancing for network traffic.

HAProxy is a widely used tool for distributing incoming requests across multiple backend servers to
enhance both reliability and performance. It performs continuous health checks on these servers to
ensure that traffic is routed only to those that are healthy and responsive.

The tool employs various algorithms, such as round-robin and least connections, to effectively
balance the load. Supporting both TCP and HTTP traffic, HAProxy operates at Layer 4 (the transport
layer) and Layer 7 (the application layer) of the OSI model.

There are two main components when configuring HAproxy , a frontend and a backend section.

Frontend section: It is the entry point for incoming client requests. It defines how
HAProxy listens for incoming traffic and how it should handle these requests, here we
specify the address and port on which HAProxy should listen, as well as any rules or
conditions for routing the traffic to the appropriate backend by inspecting the incoming
packets.
Backend section: it represents the servers that will handle the requests forwarded by
the frontend. we define how HAProxy should route traffic to the backend servers and how
it should manage these servers basically we specify also load balancing algorithms, and
health checks. In summary we control how requests will be distributed among the servers
and how we are going to handle server failures or maintenance.

I-/ General Concepts

I-1/HAproxy

HA proxy load balancer

VRRP (Virtual Router Redundancy Protocol) is designed to create a virtual router that
represents a group of physical routers, allowing them to work together to present a single virtual IP
address (VIP) to the network. This VIP is used as the default gateway by clients.

In a VRRP setup, one router is elected as the master. The master router handles traffic directed to
the VIP, while the other routers in the group act as backups and monitor the master router’s health.
If the master router fails, one of the backup routers takes over as the new master, ensuring the
continuity of service.

Keepalived is a widely used implementation of VRRP with additional features. It assigns a priority
to each node in the group, and based on these priorities, it elects a new master if a failure occurs.

I-2/Keepalived & VRRP

Keepalived enhances VRRP with advanced health checks and failover capabilities, making it ideal
for high-availability setups.

Virtual IP assignment

After understanding the foundational concepts of HAProxy and Keepalived, it’s crucial to see how
these components come together to form a high availability cluster.

Deployment Architecture
Deployment architecture

The architecture I’ve implemented leverages Docker to create a resilient and scalable environment,
ensuring continuous service availability. The visual representation above illustrates how traffic is
routed through HAProxy instances and managed by Keepalived to provide redundancy and failover
capabilities.

To interconnect all components, I set up a Docker bridge network, which ensures seamless
communication between the HAProxy instances, Keepalived, and the backend servers. This
network allows the HAProxy instances to effectively distribute incoming traffic across multiple
backend servers while monitoring their health and performance.

In this setup, there is a primary HAProxy instance (the master) and a secondary instance (the
backup) ready to take over if the master fails. Keepalived, installed on both machines, manages
the virtual IP (VIP) that clients connect to. This VIP ensures that, even in the event of a failure,

II-/ Deployment architecture

traffic is automatically redirected to the backup HAProxy instance, maintaining service availability
without interruption.

The backend comprises three cloned instances of a server running a simple Flask application that
serves static content. This setup is an example of a stateless application deployment, where each
instance operates independently without relying on session persistence or shared state. In the case
of stateful applications, additional architectural considerations would be necessary, such as
implementing shared storage, session replication, sticky sessions, or database clustering to ensure
consistency and availability. Following best practices in system design is crucial to address these
challenges and optimize the architecture based on the application’s specific requirements and
context.

The first thing we’re going to do is create our stateless app a simple Python application
that doesn’t store any session information. To get started, we need to create a virtual
environment, so make sure you have Python installed on your machine.

III-/Step by step guide

Virtual environment creation

Activate the virtual environment, and then install Flask.

Installing Flask

Now Flask is installed in our virtual environment, we are going to create a simple Flask
App with hello world! content, for me I’ll use nano editor, you can use whatever editor
you want for that purpose.

nano app.py

Flask webapp

Copy paste the following content or create your own:

Flask apps run by default in port 5000, you can test the webapp by running: python app.py

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

if __name__ == '__main__':
 app.run(debug=False)

Running Flask app

Accessing web app on the browser

The app is up and running Now we should get the dependencies used in our app, we will save them
on requirements.txt .

Saving requirements in a file

- We will need these requirements so we can create the Dockerfile of our webapp, then run the
following command to create a Dockerfile of the webapp.

copy and paste the following:

pip freeze > requirements.txt

nano Dockerfile.webapp

FROM python:3.12.5
Expose 5000
ENV FLASK_app=app.py
WORKDIR /app
COPY ./app.py .
COPY ./requirements.txt .
RUN pip install -r requirements.txt
RUN pip install gunicorn

Note that we added Gunicorn in our Dockerfile to run our Python web app because using
development servers is not suitable for production environments.

Let’s create our first image , it’ll be saved locally.

After finalizing the Dockerfile for our web app, it’s time to create our Docker Compose YAML file,
which will define our entire architecture. We’ll break it down step by step.

Here is the docker compose file.

CMD gunicorn -w 4 -b :5000 app:app

docker build -f Dockerfile.webapp -t webapp_test .

version: '3.8'

services:
 haproxy1:
 build:
 context: .
 dockerfile: Dockerfile
 container_name: haproxy1
 networks:
 yahya_prive:
 ipv4_address: 10.0.0.150
 cap_add:
 - NET_ADMIN
 ports:
 - "8888:80"
 - "8404:8404"
 volumes:
 - C:\Users\John macmillan\Desktop\python_project\haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg:ro
 - C:\Users\John macmillan\Desktop\python_project\keepalived_primary.conf:/etc/keepalived/keepalived.conf:ro
 depends_on:
 - web1
 - web2
 - web3
 entrypoint: ["/bin/sh", "-c", "keepalived -D -f /etc/keepalived/keepalived.conf && haproxy -f /usr/local/etc/haproxy/haproxy.cfg"]

 haproxy2:
 build:
 context: .
 dockerfile: Dockerfile
 container_name: haproxy2
 networks:
 yahya_prive:
 ipv4_address: 10.0.0.155
 cap_add:
 - NET_ADMIN
 ports:
 - "8800:80"
 - "8405:8404"

let’s break this down:

First thing we did is to create a network bridge . This Network bridge is called yahya_prive then we
specified the CIDR notation: 10.0.0.0/24 with the following gateway: 10.0.0.1

it’ll be our private network in which all the containers will be assigned an ip address from the ip
address range 10.0.0.0/24 .

 volumes:
 - C:\Users\John macmillan\Desktop\python_project\haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg:ro
 - C:\Users\John macmillan\Desktop\python_project\keepalived_bck.conf:/etc/keepalived/keepalived.conf:ro
 depends_on:
 - web1
 - web2
 - web3
 entrypoint: ["/bin/sh", "-c", "keepalived -D -f /etc/keepalived/keepalived.conf && haproxy -f /usr/local/etc/haproxy/haproxy.cfg"]

 web1:
 image: webapp_test
 container_name: web1
 networks:
 - yahya_prive

 web2:
 image: webapp_test
 container_name: web2
 networks:
 - yahya_prive

 web3:
 image: webapp_test
 container_name: web3
 networks:
 - yahya_prive

networks:
 yahya_prive:
 driver: bridge
 #specify the driver
 ipam:
 config :
 - subnet: 10.0.0.0/24
 gateway: 10.0.0.1

networks:
 yahya_prive:
 driver: bridge
 #specify the driver
 ipam:
 config :
 - subnet: 10.0.0.0/24
 gateway: 10.0.0.1

It’s advisable to use a custom network rather than the default network provided by Docker
Compose. This approach enhances security and allows you to use domain names instead of IP
addresses in configurations.

Then there is a section for our webapps, they’re called respectively: web1, web2 and web3, all
three of them is now attached to yahya_prive network.

Each one was provided a name, and the base image was created previously, and it was saved
locally which is webapp_test

After this we’ve created the service for our HAProxy load balancer.

web1:
 image: webapp_test
 container_name: web1
 networks:
 - yahya_prive

 web2:
 image: webapp_test
 container_name: web2
 networks:
 - yahya_prive

 web3:
 image: webapp_test
 container_name: web3
 networks:
 - yahya_prive

haproxy1:
 build:
 context: .
 dockerfile: Dockerfile
 container_name: haproxy1
 networks:
 yahya_prive:
 ipv4_address: 10.0.0.150
 cap_add:
 - NET_ADMIN
 ports:
 - "8888:80"
 - "8404:8404"
 volumes:
 - C:\Users\John macmillan\Desktop\python_project\haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg:ro
 - C:\Users\John macmillan\Desktop\python_project\keepalived_primary.conf:/etc/keepalived/keepalived.conf:ro
 depends_on:
 - web1
 - web2
 - web3
 entrypoint: ["/bin/sh", "-c", "keepalived -D -f /etc/keepalived/keepalived.conf && haproxy -f /usr/local/etc/haproxy/haproxy.cfg"]

The Master HAProxy is called haproxy1, and it was assigned the ip address:

10.0.0.150 from the private network yahya_prive.

To enable Keepalived, which uses VRRP for failover, the container requires additional network
capabilities. Therefore, we grant the container NET_ADMIN privileges, allowing it to manage network
settings necessary for VRRP operations.

The necessary configuration files for HAProxy and Keepalived are mounted as read-only volumes
from the host machine to ensure that both services are properly configured.

The entrypoint directive ensures that Keepalived starts in the background and monitors the
HAProxy service, providing the high availability setup.

And obviously, there is the configuration Dockerfile that contains our Keepalived and HAProxy.

The configuration for both load balancers is exactly the same (haproxy.cfg)

FROM ubuntu:22.04

Install Keepalived and HAProxy
RUN apt-get update && apt-get install -y \
 nano \
 net-tools \
 keepalived \
 haproxy

EXPOSE 80
EXPOSE 8444

global
 stats socket /var/run/api.sock user haproxy group haproxy mode 660 level admin expose-fd listeners
 log stdout format raw local0 info

defaults
 mode http
 timeout client 10s
 timeout connect 5s
 timeout server 10s
 timeout http-request 10s
 log global

frontend stats
 bind *:8404
 stats enable
 stats uri /
 stats refresh 10s

frontend myfrontend
 bind :80
 default_backend webservers

What we’ve done here is configure our load balancer to listen for requests on port 80. We’ve also
defined our web servers in the backend webservers section, allowing us to route traffic to them
effectively.

On the other hand, we had different configurations of Keepalived daemons for both nodes.

here is the configuration for the master node (keepalived_primary.conf):

This is a basic configuration where we’ve assigned a priority of 255, which is higher than the
priority set on the backup machine. As a result, this machine will be assigned the virtual IP address
first. We’ve defined the state as MASTER for this machine and specified eth0 as the interface, as it’s
connected to the private network through this interface.

The most critical part of this configuration is the virtual_ipaddress section, where we define the
virtual IP address (10.0.0.50/24) that will be managed by the VRRP protocol. This IP address will be
assigned to the master machine, ensuring that it handles traffic as long as it remains in the master
state. The authentication section provides basic security by requiring a password for VRRP
communications, adding an extra layer of protection to the setup.

The configuration for the backup node will be different a little bit (keepalived_bck.conf):

backend webservers
server s1 web1:5000 check
server s2 web2:5000 check
server s3 web3:5000 check

vrrp_instance VI_1 {
 state MASTER
 interface eth0
 virtual_router_id 33
 priority 255
 advert_int 1
 unicast_src_ip 10.0.0.50

 authentication {
 auth_type PASS
 auth_pass letmein
 }

 virtual_ipaddress {
 10.0.0.50/24 dev eth0
 }
}

vrrp_instance VI_1 {
 state BACKUP
 interface eth0
 virtual_router_id 33
 priority 150
 advert_int 1

We’ve set a priority of 150, which is lower than that of the master, and designated the state as
BACKUP . Both the master and backup nodes share the same virtual IP address (VIP). In the event of
the master node failing, the backup node will detect this through ARP checks and automatically
take over the VIP, ensuring continued service availability.

Note that the Docker Compose file includes a depends_on section that specifies the order in which
containers are started. In this case:

This configuration ensures that the web applications (web1 , web2 , and web3) start before the load
balancers are initialized. This order is crucial to ensure that the web servers are up and running
before the load balancers begin routing traffic to them.

After completing the necessary configurations, you can run the entire setup with the following
command:

Now, your setup is up and running.

Accessing webapp
Accessing webapp

The haproxy1 container will receive the virtual IP address on its eth0 interface. You can verify this
by running the following command inside the container: ip a .

 unicast_src_ip 10.0.0.50

 authentication {
 auth_type PASS
 auth_pass letmein
 }

 virtual_ipaddress {
 10.0.0.50/24 dev eth0
 }
}

depends_on:
 - web1
 - web2
 - web3

docker-compose -p high_availability_cluster up -d

Virtual Ip address assigned

We can try sending an HTTP request using the curl command from a node inside the yahya_prive
 network. For example, we can use web1 for this purpose.

Getting web content from using VIP

In conclusion, building a high availability cluster with HAProxy, Keepalived, and Docker is an
effective way to ensure continuous service availability and reliability. Through this guide, we’ve
explored the fundamental concepts of high availability, examined how HAProxy and Keepalived
work together to manage traffic and failover, and demonstrated how to set up this architecture in a
Docker environment. By following these steps, you can create a resilient infrastructure that can
handle disruptions and maintain service continuity, making it an essential setup for any robust and
scalable application deployment.

Equipped with this understanding, you’ll now be able to enhance your network
infrastructure and deploy more resilient, scalable applications with confidence.

IV-/Conclusion

We invite you to share your experiences and insights in the comments below. We’re
eager to hear your feedback and thoughts. Happy networking!

References

For more detailed information :

1. Networks top-level elements | Docker Docs
2. HAProxy version 2.9.9–41 — Starter Guide
3. Understanding Virtual Router Redundancy Protocol (VRRP) | FS Community
4. Setting up a Linux cluster with Keepalived: Basic configuration | Enable Sysadmin

(redhat.com)

Revision #2
Created 24 May 2025 02:23:25 by Administrador
Updated 24 May 2025 02:26:53 by Administrador

https://docs.docker.com/reference/compose-file/networks/
https://docs.haproxy.org/2.9/intro.html
https://community.fs.com/article/understanding-virtual-router-redundancy-protocol-vrrp.html
https://www.redhat.com/sysadmin/keepalived-basics
https://www.redhat.com/sysadmin/keepalived-basics

