Self-Hosting Guide - Docker
Installation

Link: https://jitsi.github.io/handbook/docs/devops-quide/devops-quide-docker/

Update 04/07/2024

Quick start

In order to quickly run Jitsi Meet on a machine running Docker and Docker Compose, follow these
steps:

1. Download and extract the latest release. DO NOT clone the git repository. See below if

you are interested in running test images:

wget $(curl -s https://api.github.com/repos/jitsi/docker-jitsi-meet/releases/latest | grep 'zip' | cut -d\" -

f4)

oo

2. Unzip the package:
unzip <filename>

]
3. Create a .env file by copying and adjusting env.example :

cp env.example .env

=]
4. Set strong passwords in the security section options of .env file by running the following
bash script

./Jgen-passwords.sh

]
5. Create required CONFIG directories

e For linux:

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/
https://github.com/jitsi/docker-jitsi-meet/releases/latest
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#quick-start

mkdir -p ~/.jitsi-meet-cfg/{web,transcripts,prosody/config,prosody/prosody-plugins-
custom,jicofo,jvb,jigasi,jibri}

oo

e For Windows:

echo web,transcripts,prosody/config,prosody/prosody-plugins-custom,jicofo,jvb,jigasi,jibri | % { mkdir

"~/ jitsi-meet-cfg/$_" }

om

6. Run docker compose up -d

7. Access the web Ul at https://localhost:8443 (or a different port, in case you edited the .env
file).

NOTE

HTTP (not HTTPS) is also available (on port 8000, by default), but that's e.g. for a reverse proxy
setup; direct access via HTTP instead HTTPS leads to WebRTC errors such as Failed to access your
microphone/camera: Cannot use microphone/camera for an unknown reason. Cannot read property
'getUserMedia' of undefined or navigator.mediaDevices is undefined.

If you want to use jigasi too, first configure your env file with SIP credentials and then run Docker
Compose as follows:
docker compose -f docker-compose.yml -f jigasi.yml up

[u]

If you want to enable document sharing via Etherpad, configure it and run Docker Compose as
follows:
docker compose -f docker-compose.yml -f etherpad.yml up

=]
If you want to use jibri too, first configure a host as described in Jitsi Broadcasting Infrastructure
configuration section and then run Docker Compose as follows:

docker compose -f docker-compose.yml -f jibri.yml up -d

[u]

or to use jigasi too:

docker compose -f docker-compose.yml -f jigasi.yml -f jibri.yml up -d

Updating

https://localhost:8443/
https://github.com/ether/etherpad-lite
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#updating

If you want to update, simply run

wget $(curl -s https://api.github.com/repos/jitsi/docker-jitsi-meet/releases/latest | grep 'zip' | cut -d\" -f4)

oo

again (just like how you initially downloaded Jitsi). Then unzip and overwrite all when being asked:

unzip <filename>

Testing development / unstable builds

Download the latest code:
git clone https://github.com/jitsi/docker-jitsi-meet && cd docker-jitsi-meet
NOTE

The code in master is designed to work with the unstable images. Do not run it with release
images.

Run docker compose up as usual.

Every day a new "unstable" image build is uploaded.

Building your own images

Download the latest code:

git clone https://github.com/jitsi/docker-jitsi-meet && cd docker-jitsi-meet

The provided Makefile provides a comprehensive way of building the whole stack or individual
images.

To build all images:

make

To build a specific image (the web image for example):

make build_web

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#testing-development--unstable-builds
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#building-your-own-images

Once your local build is ready make sure to add JITSI_IMAGE_VERSION=latest to your .env file.

Security note

This setup used to have default passwords for internal accounts used across components. In order
to make the default setup secure by default these have been removed and the respective
containers won't start without having a password set.

Strong passwords may be generated as follows: ./gen-passwords.sh This will modify your .env file (a
backup is saved in .env.bak) and set strong passwords for each of the required options. Passwords
are generated using openssl rand -hex 16 .

DO NOT reuse any of the passwords.

Architecture

A Jitsi Meet installation can be broken down into the following components:

e A web interface

e An XMPP server

e A conference focus component

e A video router (could be more than one)

e A SIP gateway for audio calls

e A Broadcasting Infrastructure for recording or streaming a conference.

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#security-note
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#architecture

The diagram shows a typical deployment in a host running Docker. This project separates each of

the components above into interlinked containers. To this end, several container images are
provided.

External Ports

The following external ports must be opened on a firewall:

e 80/tcp for Web Ul HTTP (really just

to redirect, after uncommenting
ENABLE_HTTP_REDIRECT=1 in .env)

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#external-ports

e 443/tcp for Web Ul HTTPS
e 10000/udp for RTP media over UDP

Also 20000-20050/udp for jigasi, in case you choose to deploy that to facilitate SIP access.

E.g. on a CentOS/Fedora server this would be done like this (without SIP access):

sudo firewall-cmd --permanent --add-port=80/tcp
sudo firewall-cmd --permanent --add-port=443/tcp
sudo firewall-cmd --permanent --add-port=10000/udp

sudo firewall-cmd --reload

=]

See the corresponding section in the debian/ubuntu setup guide.

Images

o base: Debian stable base image with the S6 Overlay for process control and the Jitsi

repositories enabled. All other images are based on this one.
base-java: Same as the above, plus Java (Open)DK).
web: Jitsi Meet web Ul, served with nginx.

prosody: Prosody, the XMPP server.

jicofo: Jicofo, the XMPP focus component.

e jvb: Jitsi Videobridge, the video router.

e jigasi: Jigasi, the SIP (audio only) gateway.
e jibri: Jibri, the broadcasting infrastructure.

Design considerations

Jitsi Meet uses XMPP for signaling, thus the need for the XMPP server. The setup provided by these
containers does not expose the XMPP server to the outside world. Instead, it's kept completely
sealed, and routing of XMPP traffic only happens on a user-defined network.

The XMPP server can be exposed to the outside world, but that's out of the scope of this project.

Configuration

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-quickstart#setup-and-configure-your-firewall
https://github.com/just-containers/s6-overlay
https://jitsi.org/downloads/
https://jitsi.org/downloads/
https://prosody.im/
https://github.com/jitsi/jicofo
https://github.com/jitsi/jitsi-videobridge
https://github.com/jitsi/jigasi
https://github.com/jitsi/jibri
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#images
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#design-considerations
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#configuration

The configuration is performed via environment variables contained in a .env file. You can copy the
provided env.example file as a reference.

Variable Description Example
CONFIG Directory where all configuration will be stored /opt/jitsi-meet-cfg
Tz System Time Zone Europe/Amsterdam
HTTP_PORT Exposed port for HTTP traffic 8000
HTTPS_PORT Exposed port for HTTPS traffic 8443
JVB_ADVERTISE_IPS IP addresses of the Docker host (comma separated), needed for 192.168.1.1

LAN environments

PUBLIC_URL Public URL for the web service https://meet.example.com

NOTE

The mobile apps won't work with self-signed certificates (the default). See below for instructions on
how to obtain a proper certificate with Let's Encrypt.

TLS Configuration

Let's Encrypt configuration

If you want to expose your Jitsi Meet instance to the outside traffic directly, but don't own a proper
TLS certificate, you are in luck because Let's Encrypt support is built right in. Here are the required
options:

Variable Description Example
ENABLE_LETSENCRYPT Enable Let's Encrypt certificate 1
generation
LETSENCRYPT_DOMAIN Domain for which to generate the meet.example.com
certificate
LETSENCRYPT_EMAIL E-Mail for receiving important account

alice@atlanta.net

notifications (mandatory)

In addition, you will need to set HTTP_PORT to 80 and HTTPS_PORT to 443 and PUBLIC_URL to your
domain. You might also consider to redirect HTTP traffic to HTTPS by setting
ENABLE_HTTP_REDIRECT=1 .

Let's Encrypt rate limit warning: Let's Encrypt has a limit to how many times you can submit a
request for a new certificate for your domain name. At the time of writing, the current limit is five
new (duplicate) certificates for the same domain name every seven days. Because of this, it is

https://meet.example.com/
mailto:alice@atlanta.net
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#tls-configuration
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#lets-encrypt-configuration

recommended that you disable the Let's Encrypt environment variables from .env if you plan on
deleting the jitsi-meet-cfg folder. Otherwise, you might want to consider moving the jitsi-meet-cfg

folder to a different location so you have a safe place to find the certificate that already Let's
Encrypt issued. Or do initial testing with Let's Encrypt disabled, then re-enable Let's Encrypt once
you are done testing.

NOTE

When you move away from LETSENCRYPT USE_STAGING, you will have to manually clear the
certificates from jitsi-meet-cfg/web .

For more information on Let's Encrypt's rate limits, visit: https://letsencrypt.org/docs/rate-limits/

Using existing TLS certificate and key

If you own a proper TLS certificate and don't need a Let's Encrypt certificate, you can configure Jitsi
Meet container to use it.

Unlike Let's Encrypt certificates, this is not configured through the .env file, but by telling Jitsi
Meet's web service to mount the following two volumes:

e mount /path/to/your/cert.key file to /config/keys/cert.key mount point
e mount /path/to/your/cert.fullchain file to the /config/keys/cert.crt mount point.

Doing it in docker-compose.yml file should look like this:

services:

web:
volumes:

- /[path/to/your/cert.fullchain:/config/keys/cert.crt
- /[path/to/your/cert.key:/config/keys/cert.key

Features configuration (config.js)

Variable Description Exampl

TOOLBAR_BUTTONS Configure toolbar buttons. Add the buttons name separated with comma(no
spaces between comma)

https://letsencrypt.org/docs/rate-limits/
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#using-existing-tls-certificate-and-key
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#features-configuration-configjs

Variable

HIDE_PREMEETING_BUTTONS

ENABLE_LOBBY

ENABLE_AV_MODERATION

ENABLE_PREJOIN_PAGE

ENABLE_WELCOME_PAGE

ENABLE_CLOSE_PAGE

DISABLE_AUDIO_LEVELS

ENABLE_NOISY_MIC_DETECTI
ON

ENABLE_BREAKOUT_ROOMS

Description Exampl

Hide the buttons at pre-join screen. Add the buttons name separated with comma

Control whether the lobby feature should be enabled or not 1
Control whether the A/V moderation should be enabled or not 1
Show a prejoin page before entering a conference 1
Enable the welcome page 1
Enable the close page 0
Disable measuring of audio levels 0
Enable noisy mic detection 1
Enable breakout rooms 1

Jigasi SIP gateway (audio only)

configuration

If you want to enable the SIP gateway, these options are required:

Variable

JIGASI_SIP_URI

JIGASI_SIP_PASSWORD

JIGASI_SIP_SERVER

JIGASI_SIP_PORT

JIGASI_SIP_TRANSPORT

Description Example

SIP URI for incoming / outgoing calls test@sip2sip.info

Password for the specified SIP account <unset>

SIP server (use the SIP account sip2sip.info
domain if in doubt)

SIP server port 5060

SIP transport ubpP

Display Dial-In information

Variable

DIALIN_NUMBERS_URL

CONFCODE_URL

Description Example

URL to the JSON with all Dial-In
numbers

https://meet.example.com/dialin.json

URL to the API for
checking/generating Dial-In codes

https://jitsi-

api.jitsi.net/conferenceMapper

The JSON with the Dial-In numbers should look like this:

mailto:test@sip2sip.info
https://meet.example.com/dialin.json
https://jitsi-api.jitsi.net/conferenceMapper
https://jitsi-api.jitsi.net/conferenceMapper
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#jigasi-sip-gateway-audio-only-configuration
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#display-dial-in-information

{"message":"Dial-In numbers:","numbers": {"DE": ["+49-721-0000-0000"1},"numbersEnabled":true}

Recording / live streaming configuration

with Jibri

If you are using a release older than 7439 some extra setup is necessary.

If you want to enable Jibri these options are required:

Variable Description Example

ENABLE_RECORDING Enable recording / live streaming 1

Extended Jibri configuration:

Variable Description Example
JIBRI_RECORDER_USER Internal recorder user for Jibri client connections recorder
JIBRI_RECORDER_PASSWORD Internal recorder password for Jibri client connections <unset>
JIBRI_RECORDING_DIR Directory for recordings inside Jibri container /config/recordings
JIBRI_FINALIZE_RECORDING_SCRIPT_PATH The finalizing script. Will run after recording is complete /config/finalize.sh
JIBRI_XMPP_USER Internal user for Jibri client connections. jibri
JIBRI_STRIP_DOMAIN_JID Prefix domain for strip inside Jibri (please see muc

env.example for details)
JIBRI_BREWERY_MUC MUC name for the Jibri pool jibribrewery

JIBRI_PENDING_TIMEOUT MUC connection timeout 90

Jitsi Meet configuration

Jitsi-Meet uses two configuration files for changing default settings within the web interface:
config.js and interface_config.js . The files are located within the CONFIG/web/ directory configured
within your environment file.

These files are re-created on every container restart. If you'd like to provide your own settings,
create your own config files: custom-config.js and custom-interface_config.js .

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#recording--live-streaming-configuration-with-jibri
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#jitsi-meet-configuration

It's enough to provide your relevant settings only, the docker scripts will append your custom files
to the default ones!

Authentication

Authentication can be controlled with the environment variables below. If guest access is enabled,
unauthenticated users will need to wait until a user authenticates before they can join a room. If
guest access is not enabled, every user will need to authenticate before they can join.

If authentication is enabled, once an authenticated user logged in, it is always logged in before the
session timeout. You can set ENABLE_AUTO LOGIN=0 to disable this default auto login feature or you
can set JICOFO_AUTH_LIFETIME to limit the session lifetime.

Variable Description Example
ENABLE_AUTH Enable authentication 1
ENABLE_GUESTS Enable guest access 1
AUTH_TYPE Select authentication type (internal, internal
jwt or Idap)
ENABLE_AUTO_LOGIN Enable auto login 1
JICOFO_AUTH_LIFETIME Select session timeout value for an 3 hours

authenticated user

Internal authentication

The default authentication mode (internal) uses XMPP credentials to authenticate users. To enable
it you have to enable authentication with ENABLE AUTH and set AUTH_TYPE to internal, then
configure the settings you can see below.

Internal users must be created with the prosodyctl utility in the prosody container. In order to do
that, first, execute a shell in the corresponding container:
docker compose exec prosody /bin/bash

=]

Once in the container, run the following command to create a user:

prosodyctl --config /config/prosody.cfg.lua register TheDesiredUsername meet.jitsi TheDesiredPassword

oo

Note that the command produces no output.

To delete a user, run the following command in the container:

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#authentication
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#internal-authentication

prosodyctl --config /config/prosody.cfg.lua unregister TheDesiredUsername meet.jitsi

=]

To list all users, run the following command in the container:

find /config/data/meet%?2ejitsi/accounts -type f -exec basename {} .dat;

Authentication using LDAP

You can use LDAP to authenticate users. To enable it you have to enable authentication with
ENABLE_AUTH and set AUTH_TYPE to Idap, then configure the settings you can see below.

Variable Description

LDAP_URL

LDAP_BASE

LDAP_BINDDN

LDAP_BINDPW

LDAP_FILTER

LDAP_AUTH_METHOD

LDAP_VERSION

LDAP_USE_TLS

LDAP_TLS_CIPHERS

LDAP_TLS CHECK_PEER

LDAP_TLS_CACERT FILE

LDAP_TLS_CACERT DIR

LDAP_START TLS

URL for Idap connection
LDAP base DN. Can be empty.

LDAP user DN. Do not specify this
parameter for the anonymous bind.

LDAP user password. Do not specify
this parameter for the anonymous
bind.

LDAP filter.

LDAP authentication method.
LDAP protocol version
Enable LDAP TLS

Set TLS ciphers list to allow

Require and verify LDAP server
certificate

Path to CA cert file. Used when server
certificate verification is enabled

Path to CA certs directory. Used when
server certificate verification is
enabled.

Enable START_TLS, requires LDAPv3,
URL must be Idap:// not Idaps://

Example
Idaps://Idap.domain.com/
DC=example,DC=domain,DC=com

CN=binduser,0OU=users,DC=example,
DC=domain,DC=com

LdapUserPasswOrd

(sAMAccountName=%u)
bind

3

SECURE256:SECURE128

/etc/ssl/certs/ca-certificates.crt

/etc/ssl/certs

Authentication using JWT tokens

You can use JWT tokens to authenticate users. To enable it you have to enable authentication with
ENABLE_AUTH and set AUTH_TYPE to jwt, then configure the settings you can see below.

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#authentication-using-ldap
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#authentication-using-jwt-tokens

Variable

JWT APP_ID

JWT_APP_SECRET

JWT_ACCEPTED_ISSUERS

JWT ACCEPTED_AUDIENCES

JWT_ASAP_KEYSERVER

JWT ALLOW EMPTY

JWT_AUTH_TYPE

JWT_TOKEN_AUTH_MODULE

Description
Application identifier
Application secret known only to your token

(Optional) Set asap_accepted_issuers as a comma separated
list

(Optional) Set asap_accepted_audiences as a comma separated
list

(Optional) Set asap_keyserver to a url where public keys can be
found

(Optional) Allow anonymous users with no JWT while validating
JWTs when provided

(Optional) Controls which module is used for processing
incoming JWTs

(Optional) Controls which module is used for validating JWTs

Example
my _jitsi_app_id
my_jitsi_app_secret

my_web_client,my_app_cli
ent

my_serverl,my server2

https://example.com/asap

Ed

0

token

token_verification

This can be tested using the jwt.io debugger. Use the following sample payload:

"avatar": "https://robohash.org/john-doe",

{
"context": {
"user": {
"name": "John Doe",
"email": "jJdoe@example.com"
}
H

"aud": "my_jitsi_app_id",

"iss": "my_jitsi_app_id",

"sub": "meet.jitsi",

||room||: nxn

Authentication using Matrix

For more information see the documentation of the "Prosody Auth Matrix User Verification" here.

Variable

Description

Example

https://example.com/asap%3E
https://example.com/asap%3E
https://jwt.io/#debugger-io
https://github.com/matrix-org/prosody-mod-auth-matrix-user-verification
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#authentication-using-matrix

MATRIX_UVS_URL Base URL to the matrix user verification service (without ending https://uvs.example.

slash)
com:3000>
MATRIX_UVS_ISSUER (optional) The issuer of the auth token to be passed through. issuer (default)
Must match what is being set as iss in the JWT.
MATRIX_UVS_AUTH_TOKEN (optional) user verification service auth token, if authentication changeme

enabled

MATRIX_UVS_SYNC_POWER_LEVELS = (optional) Make Matrix room moderators owners of the Prosody 1
room.

Authentication using Hybrid Matrix Token

You can use Hybrid Matrix Token to authenticate users. It supports Matrix and JWT Token
authentications on the same setup. To enable it you have to enable authentication with
ENABLE_AUTH and set AUTH TYPE to hybrid_matrix_token , then configure the settings you can see
below.

For more information see the documentation of the "Hybrid Matrix Token" here.

Variable Description Example
MATRIX_UVS_URL Base URL to the matrix user verification service (without ending https://uvs.exam
slash)
ple.com:3000>
MATRIX_UVS_ISSUER (optional) The issuer of the auth token to be passed through. Must my_issuer
match what is being set as iss in the JWT. It allows all issuers (*)
by default.
MATRIX_UVS_AUTH_TOKEN (optional) user verification service auth token, if authentication my_matrix_secre
enabled t
MATRIX_UVS_SYNC_POWER_LEVELS (optional) Make Matrix room moderators owners of the Prosody 1
room.
MATRIX_LOBBY_BYPASS (optional) Allow Matrix room members to bypass Jitsi lobby check. 1
JWT_APP_ID Application identifier my _jitsi_app_id
JWT_APP_SECRET Application secret known only to your token my_jitsi_app_sec
ret
JWT_ALLOW_EMPTY (Optional) Allow anonymous users with no JWT while validating 0

JWTs when provided

External authentication

https://uvs.example.com:3000%3E
https://uvs.example.com:3000%3E
https://github.com/jitsi-contrib/prosody-plugins/tree/main/auth_hybrid_matrix_token
https://uvs.example.com:3000%3E
https://uvs.example.com:3000%3E
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#authentication-using-hybrid-matrix-token
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#external-authentication

Variable Description Example

TOKEN_AUTH_URL Authenticate using external service or just focus external auth https://auth.meet.example.co
window if there is one already.

m/{room}>

Shared document editing using Etherpad

You can collaboratively edit a document via Etherpad. In order to enable it, set the config options
below and run Docker Compose with the additional config file etherpad.yml .

Here are the required options:

Variable Description Example

E AR D R S5 Set etherpad-lite URL http://etherpad.meet.jitsi:9001>

Transcription configuration

If you want to enable the Transcribing function, these options are required:

Variable Description Example
ENABLE_TRANSCRIPTIONS Enable Jigasi transcription in a 1
conference
GC_PROJECT_ID project_id from Google Cloud
Credentials
GC_PRIVATE_KEY_ID private_key_id from Google Cloud
Credentials
GC_PRIVATE_KEY private_key from Google Cloud
Credentials
GC_CLIENT_EMAIL client_email from Google Cloud
Credentials
GC_CLIENT_ID client_id from Google Cloud
Credentials
GC_CLIENT_CERT_URL client_x509_cert_url from Google Cloud
Credentials
JIGASI_TRANSCRIBER_RECORD_AUDIO Jigasi will record audio when true

transcriber is on

JIGASI_TRANSCRIBER_SEND_TXT Jigasi will send transcribed text to the true
chat when transcriber is on

https://auth.meet.example.com/%7Broom%7D%3E
https://auth.meet.example.com/%7Broom%7D%3E
https://github.com/ether/etherpad-lite
http://etherpad.meet.jitsi:9001%3E
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#shared-document-editing-using-etherpad
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#transcription-configuration

Variable

JIGASI_TRANSCRIBER_ADVERTISE_URL

Description

Jigasi will post an url to the chat with
transcription file

Example

true

For setting the Google Cloud Credentials please read https://cloud.google.com/text-to-

speech/docs/quickstart-protocol> section "Before you begin" paragraph 1 to 5.

Sentry logging configuration

Variable

JVB_SENTRY_DSN

JICOFO_SENTRY_DSN

JIGASI_SENTRY_DSN

SENTRY_ENVIRONMENT

SENTRY_RELEASE

Description

Sentry Data Source Name (Endpoint
for Sentry project)

Sentry Data Source Name (Endpoint
for Sentry project)

Sentry Data Source Name (Endpoint
for Sentry project)

Optional environment info to filter
events

Optional release info to filter events

TURN server configuration

Configure external TURN servers.

Variable

TURN_CREDENTIALS

TURN_HOST

TURN_PORT

TURN_TRANSPORT

TURNS_HOST

TURNS_PORT

Description
Credentials for TURN servers

TURN server hostnames as a comma
separated list (UDP or TCP transport)

TURN server port (UDP or TCP
transport)

TURN server protocols as a comma
separated list (UDP or TCP or both)

TURN server hostnames as a comma
separated list (TLS transport)

TURN server port (TLS transport)

Default value

https://public:private@host:port/1>

https://public:private@host:port/1>

https://public:private@host:port/1>

production

1.0.0

Default value

443

tep

443

https://cloud.google.com/text-to-speech/docs/quickstart-protocol%3E
https://cloud.google.com/text-to-speech/docs/quickstart-protocol%3E
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#sentry-logging-configuration
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#turn-server-configuration

Advanced configuration

These configuration options are already set and generally don't need to be changed.

Variable

XMPP_DOMAIN

XMPP_AUTH_DOMAIN

XMPP_SERVER

XMPP_BOSH_URL_BASE

XMPP_MUC_DOMAIN

XMPP_INTERNAL_MUC_DOMAIN

XMPP_GUEST_DOMAIN

XMPP_RECORDER_DOMAIN

XMPP_MODULES

XMPP_MUC_MODULES

XMPP_INTERNAL MUC_MODULES

GLOBAL_MODULES

GLOBAL_CONFIG

RESTART_POLICY

DISABLE_HTTPS

ENABLE_HTTP_REDIRECT

LOG_LEVEL

ENABLE_HSTS

ENABLE_IPV6

ENABLE_COLIBRI_WEBSOCKET_U

NSAFE_REGEX

Description
Internal XMPP domain
Internal XMPP domain for authenticated services
Internal XMPP server name xmpp.meet.jitsi

Internal XMPP server URL for BOSH module

XMPP domain for the MUC

XMPP domain for the internal MUC
XMPP domain for unauthenticated users
Domain for the jibri recorder

Custom Prosody modules for XMPP_DOMAIN (comma
separated)

Custom Prosody modules for MUC component
(comma separated)

Custom Prosody modules for internal MUC
component (comma separated)

Custom prosody modules to load in global
configuration (comma separated)

Custom configuration string with escaped newlines
Container restart policy

Handle TLS connections outside of this setup
Redirect HTTP traffic to HTTPS

Controls which logs are output from prosody and
associated modules

Send a strict-transport-security header to force
browsers to use a secure and trusted connection.
Recommended for production use.

Provides means to disable IPv6 in environments that
don't support it

Enabled older unsafe regex for JVB colibri-ws URLs.
WARNING: Enable with caution, this regex allows
connections to arbitrary internal IP addresses and is
not recommended for production use. Unsafe regex
is defined as [a-zA-Z0-9-\._1+

Default value
meet.jitsi
auth.meet.jitsi

xmpp.meet.jitsi

http://xmpp.meet.jitsi:5280>

muc.meet.jitsi
internal-muc.meet.jitsi
guest.meet.jitsi
recorder.meet.jitsi

info,alert

info,alert

info,alert

statistics,alert

foo = bar;\nkey = val;
defaults to unless-stopped
0

0

info

http://xmpp.meet.jitsi:5280%3E
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#advanced-configuration

Variable

COLIBRI_WEBSOCKET JVB_LOOK
UP_NAME

COLIBRI_WEBSOCKET_REGEX

DISABLE_COLIBRI_WEBSOCKET_J
VB_LOOKUP

Description

DNS name to look up JVB IP address, used for default
value of COLIBRI_ WEBSOCKET REGEX

Overrides the colibri regex used for proxying to JVB.
Recommended to override in production with values
matching possible JVB IP ranges

Controls whether to run dig
$COLIBRI_WEBSOCKET _JVB_LOOKUP_NAME when defining
COLIBRI_WEBSOCKET REGEX

Advanced Prosody options

Variable

PROSODY_RESERVATION_ENABLED

Description

Default value
jvb
defaults to dig
$COLIBRI_WEBSOCKET JVB_LOOKUP_NA
ME unless

DISABLE_COLIBRI_WEBSOCKET JVB_LOO
KUP is set to true

0

Default value

Enable Prosody's reservation REST APl false

PROSODY_RESERVATION_REST BASE_URL Base URL of Prosody's reservation
REST API
PROSODY_AUTH_TYPE Select authentication type for Prosody = AUTH_TYPE
(internal, jwt or Idap)
Advanced Jicofo options
Variable Description Default
value
JICOFO_COMPONENT_SECRET XMPP component password for Jicofo s3cr37
JICOFO_AUTH_USER XMPP user for Jicofo client connections focus
JICOFO_AUTH_PASSWORD XMPP password for Jicofo client connections <unset>
JICOFO_ENABLE_AUTH Enable authentication in Jicofo ENABLE_AUT
H
JICOFO_AUTH_TYPE Select authentication type for Jicofo (internal, jwt or Idap) AUTH_TYPE
JICOFO_AUTH_LIFETIME Select session timeout value for an authenticated user 24 hours
JICOFO_ENABLE_HEALTH_CHECKS Enable health checks inside Jicofo, allowing the use of the REST api to false

check Jicofo's status

Advanced JVB options

Variable

JVB_AUTH_USER XMPP user for JVB MUC client connections

Description

jvb

Default value

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#advanced-prosody-options
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#advanced-jicofo-options
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#advanced-jvb-options

Variable Description Default value

JVB_AUTH_PASSWORD XMPP password for JVB MUC client connections <unset>

JVB_STUN_SERVERS STUN servers used to discover the server's public IP stun.l.google.com:19302,
stunl.l.google.com:19302,

stun2.l.google.com:19302
JVB_PORT UDP port for media used by Jitsi Videobridge 10000

JVB_COLIBRI_PORT COLIBRI REST API port of JVB exposed to localhost 8080

JVB_BREWERY_MUC MUC name for the JVB pool jvbbrewery
COLIBRI_REST_ENABLED Enable the COLIBRI REST API true
SHUTDOWN_REST_ENABLE = Enable the shutdown REST API true
D
Advanced Jigasi options
Variable Description Default value
JIGASI_ENABLE_SDES_SRTP Enable SDES srtp 0
JIGASI_SIP_KEEP_ALIVE_METHOD Keepalive method OPTIONS
JIGASI_HEALTH_CHECK_SIP_URI Health-check extension
JIGASI_HEALTH_CHECK_INTERVAL Health-check interval 300000
JIGASI_XMPP_USER XMPP user for Jigasi MUC client jigasi
connections
JIGASI_XMPP_PASSWORD XMPP password for Jigasi MUC client <unset>

connections

JIGASI_BREWERY_MUC MUC name for the Jigasi pool jigasibrewery

JIGASI_PORT_MIN Minimum port for media used by Jigasi 20000

JIGASI_PORT_MAX Maximum port for media used by 20050

Jigasi

Running behind NAT or on a LAN

environment

When running running in a LAN environment, or on the public Internet via NAT, the
JVB_ADVERTISE_IPS env variable should be set. This variable allows to control which IP addresses the
JVB will advertise for WebRTC media traffic.

NOTE

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#advanced-jigasi-options
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#running-behind-nat-or-on-a-lan-environment

This variable used to be called DOCKER HOST ADDRESS but it got renamed for clarity and to support
a list of IPs.

If your users are coming in over the Internet (and not over LAN), this will likely be your public IP
address. If this is not set up correctly, calls will crash when more than two users join a meeting.

The public IP address is attempted to be discovered via STUN. STUN servers can be specified with
the JVB_STUN_SERVERS option.

NOTE

Due to a bug in the docker version currently in the Debian repos (20.10.5), Docker does not listen

on IPv6 ports, so for that combination you will have to manually obtain the latest version.

Split horizon

If you are running in a split horizon environemt (LAN internal clients connect to a local IP and other
clients connect to a public IP) you can specify multiple advertised IPs by separating them with
commas:

Offline / airgapped installation

If your setup does not have access to the Internet you'll need to disable STUN on the JVB since
discovering its own IP address will fail, but that is not necessary on that type of environment.

JVB_DISABLE_STUN=true

Accessing server logs

The default bahavior of docker-jitsi-meet is to log to stdout .

While the logs are sent to stdout , they are not lost: unless configured to drop all logs, Docker keeps
them available for future retrieval and processing.

If you need to access the container's logs you have multiple options. Here are the main ones:

https://en.wikipedia.org/wiki/STUN
https://forums.docker.com/t/docker-doesnt-open-ipv6-ports/106201/2
https://forums.docker.com/t/docker-doesnt-open-ipv6-ports/106201/2
https://docs.docker.com/engine/install/debian/
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#split-horizon
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#offline--airgapped-installation
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#accessing-server-logs

e run docker compose logs -t -f <service_ name> from command line, where <service_name> is
one of web, prosody, jvb, jicofo. This command will output the logs for the selected
service to stdout with timestamps.

e use a standard docker logging driver to redirect the logs to the desired target (for

instance syslog or splunk).

e search docker hub for a third party docker logging driver plugin

e or write your own driver plugin if you have a very specific need.

For instance, if you want to have all logs related to a <service name> written to

/var/log/jitsi/<service_name> as json output, you could use docker-file-log-driver and configure it by

adding the following block in your docker-compose.yml file, at the same level as the image block of
the selected <service name> :

services:
<service_name>:

image: ...

logging:
driver: file-log-driver
options:

fpath: "/jitsi/<service_name>.log"

=]

If you want to only display the message part of the log in json format, simply execute the following
command (for instance if fpath was set to /jjitsi/jvb.log) which uses jq to extract the relevant part of
the logs:

sudo cat /var/log/jitsi/jvb.log | jg -r '.msg' | jq -r '.message’

Build Instructions

Building your images allows you to edit the configuration files of each image individually, providing
more customization for your deployment.

The docker images can be built by running the make command in the main repository folder. If you
need to overwrite existing images from the remote source, use FORCE_REBUILD=1 make .

If you are on the unstable branch, build the images with FORCE_REBUILD=1 JITSI RELEASE=unstable

make .

https://docs.docker.com/config/containers/logging/configure/
https://hub.docker.com/search?q=
https://docs.docker.com/config/containers/logging/plugins/
https://docs.docker.com/engine/extend/plugins_logging/
https://github.com/deep-compute/docker-file-log-driver
https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#build-instructions

You are now able to run docker compose up as usual.

Running behind a reverse proxy

By default this setup is using WebSocket connections for 2 core components:

e Signalling (XMPP)
e Bridge channel (colibri)

Due to the hop-by-hop nature of WebSockets the reverse proxy must properly terminate and
forward WebSocket connections. There 2 routes require such treatment:

e /Xxmpp-websocket
e /colibri-ws

With nginx, these routes can be forwarded using the following config snippet:

location /xmpp-websocket {
proxy_pass https://localhost:8443;
proxy_http_version 1.1;
proxy set header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

}

location /colibri-ws {
proxy_pass https://localhost:8443;
proxy_http_version 1.1;
proxy set header Upgrade $http_upgrade;

proxy_set header Connection "upgrade”;

]
In addition we need a route for /http-bind as XMPP over BOSH is still used by mobile clients:

location /http-bind {
proxy_pass https://localhost:8443;
proxy_http_version 1.1;
proxy_set header Upgrade $http_upgrade;

proxy_set header Connection "upgrade";

https://jitsi.github.io/handbook/docs/devops-guide/devops-guide-docker/#running-behind-a-reverse-proxy

With apache, mod _proxy and mod_proxy wstunnel need to be enabled and these routes can be
forwarded using the following config snippet:

<IfModule mod_proxy.c>
<IfModule mod_proxy_wstunnel.c>
ProxyTimeout 900
<Location "/xmpp-websocket">
ProxyPass "wss://localhost:8443/xmpp-websocket"
</Location>
<Location "/colibri-ws/">
ProxyPass "wss://localhost:8443/colibri-ws/"
</Location>
<Location "/http-bind">
ProxyPass "http://localhost:8443/http-bind"
</Location>
</IfModule>
</IfModule>

[u]

where https://localhost:8443/ is the url of the web service's ingress.

Disabling WebSocket connections

This is not the recommended setup.

If using WebSockets is not an option, these environment variables can be set to fallback to HTTP
polling and WebRTC datachannels:

ENABLE_SCTP=1
ENABLE_COLIBRI_WEBSOCKET=0
ENABLE_XMPP_WEBSOCKET=0

Revision #1
Created 6 July 2024 01:09:13 by Administrador
Updated 6 July 2024 01:44:01 by Administrador

