Instalacao Minio docker
bithnami

Link: https://github.com/bitnami/containers/tree/main/bitnami/minio

What is Bitnhami Object Storage based on
MinlO®?

44 MinlO® is an object storage server, compatible with Amazon S3 cloud storage
service, mainly used for storing unstructured data (such as photos, videos, log
files, etc.).

Overview of Bitnami Object Storage based on MinlO® Disclaimer: All software products, projects

and company names are trademark(TM) or registered(R) trademarks of their respective holders,
and use of them does not imply any affiliation or endorsement. This software is licensed to you
subject to one or more open source licenses and VMware provides the software on an AS-IS basis.
MinlO(R) is a registered trademark of the MinlO Inc. in the US and other countries. Bitnami is not
affiliated, associated, authorized, endorsed by, or in any way officially connected with MinlO Inc.
MinlO(R) is licensed under GNU AGPL v3.0.

TL;DR

docker run --name minio bitnami/minio:latest

Why use Bithami Images?

e Bitnami closely tracks upstream source changes and promptly publishes new versions of
this image using our automated systems.
o With Bitnami images the latest bug fixes and features are available as soon as possible.

https://github.com/bitnami/containers/tree/main/bitnami/minio
https://github.com/bitnami/containers/tree/main/bitnami/minio#bitnami-object-storage-based-on-minio
https://github.com/bitnami/containers/tree/main/bitnami/minio#what-is-bitnami-object-storage-based-on-minio
https://min.io/
https://github.com/bitnami/containers/tree/main/bitnami/minio#tldr
https://github.com/bitnami/containers/tree/main/bitnami/minio#why-use-bitnami-images

e Bitnami containers, virtual machines and cloud images use the same components and
configuration approach - making it easy to switch between formats based on your project
needs.

e All our images are based on minideb -a minimalist Debian based container image that
gives you a small base container image and the familiarity of a leading Linux distribution-
or scratch -an explicitly empty image-.

e All Bitnami images available in Docker Hub are signed with Notation. Check this post to

know how to verify the integrity of the images.
e Bitnami container images are released on a regular basis with the latest distribution
packages available.

Looking to use Bitnami Object Storage based on MinlO® in production? Try VMware Tanzu

Application Catalog, the commercial edition of the Bitnami catalog.

How to deploy MinlO(R) in Kubernetes?

Deploying Bitnami applications as Helm Charts is the easiest way to get started with our

applications on Kubernetes. Read more about the installation in the Bitnami MinlO(R) Chart GitHub

repository.

Bitnami containers can be used with Kubeapps for deployment and management of Helm Charts in
clusters.

Why use a non-root container?

Non-root container images add an extra layer of security and are generally recommended for
production environments. However, because they run as a non-root user, privileged tasks are

typically off-limits. Learn more about non-root containers in our docs.

Supported tags and respective Dockerfile links

Learn more about the Bitnami tagging policy and the difference between rolling tags and

immutable tags in our documentation page.

You can see the equivalence between the different tags by taking a look at the tags-info.yaml file
present in the branch folder, i.e bitnami/ASSET/BRANCH/DISTRO/tags-info.yaml .

Subscribe to project updates by watching the bitnami/containers GitHub repo.

Get this image

https://github.com/bitnami/minideb
https://notaryproject.dev/
https://blog.bitnami.com/2024/03/bitnami-packaged-containers-and-helm.html
https://bitnami.com/enterprise
https://bitnami.com/enterprise
https://github.com/bitnami/containers/tree/main/bitnami/minio#how-to-deploy-minior-in-kubernetes
https://github.com/bitnami/charts/tree/master/bitnami/minio
https://github.com/bitnami/charts/tree/master/bitnami/minio
https://kubeapps.dev/
https://github.com/bitnami/containers/tree/main/bitnami/minio#why-use-a-non-root-container
https://docs.vmware.com/en/VMware-Tanzu-Application-Catalog/services/tutorials/GUID-work-with-non-root-containers-index.html
https://github.com/bitnami/containers/tree/main/bitnami/minio#supported-tags-and-respective-dockerfile-links
https://docs.vmware.com/en/VMware-Tanzu-Application-Catalog/services/tutorials/GUID-understand-rolling-tags-containers-index.html
https://github.com/bitnami/containers
https://github.com/bitnami/containers/tree/main/bitnami/minio#get-this-image

The recommended way to get the Bitnami MinlO(R) Docker Image is to pull the prebuilt image from

the Docker Hub Registry.

docker pull bitnami/minio:latest

To use a specific version, you can pull a versioned tag. You can view the list of available versions in

the Docker Hub Registry.

docker pull bitnami/minio:[TAG]

If you wish, you can also build the image yourself by cloning the repository, changing to the
directory containing the Dockerfile and executing the docker build command. Remember to replace
the APP, VERSION and OPERATING-SYSTEM path placeholders in the example command below with
the correct values.

git clone https://github.com/bitnami/containers.git
cd bitnami/APP/VERSION/OPERATING-SYSTEM
docker build -t bitnami/APP:latest .

Persisting your database

If you remove the container all your data will be lost, and the next time you run the image the
database will be reinitialized. To avoid this loss of data, you should mount a volume that will persist
even after the container is removed.

For persistence you should mount a directory at the /bitnami/minio/data path.

docker run --name minio \
--publish 9000:9000 \
--publish 9001:9001 \
--volume /path/to/minio-persistence:/bithami/minio/data \
bitnami/minio:latest

or by modifying the docker-compose.yml file present in this repository:

services:
minio:

volumes:
- /[path/to/minio-persistence:/bitnami/minio/data

You can also mount a volume to a custom path inside the container, provided that you run the
container using the MINIO_DATA DIR environment variable.

https://hub.docker.com/r/bitnami/minio
https://hub.docker.com/r/bitnami/minio/tags/
https://github.com/bitnami/containers/tree/main/bitnami/minio#persisting-your-database
https://github.com/bitnami/containers/blob/main/bitnami/minio/docker-compose.yml

docker run --name minio \
--publish 9000:9000 \
--publish 9001:9001 \
--volume /path/to/minio-persistence:/custom/path/within/container \
--env MINIO_DATA_DIR=/custom/path/within/container \
bitnami/minio:latest

or by modifying the docker-compose.yml! file present in this repository:

services:
minio:

volumes:
- /[path/to/minio-persistence:/custom/path/within/container

environment:
- MINIO_DATA_DIR=/custom/path/within/container

44 NOTE: As this is a non-root container, the mounted files and directories must
have the proper permissions for the UID 1001 .

Connecting to other containers

Using Docker container networking, a MinlO(R) server running inside a container can easily be

accessed by your application containers.

Containers attached to the same network can communicate with each other using the container
name as the hostname.

Using the Command Line

In this example, we will create a MinlO(R) client container that will connect to the server container

that is running on the same docker network as the client.

Step 1: Create a network

docker network create app-tier --driver bridge

https://github.com/bitnami/containers/blob/main/bitnami/minio/docker-compose.yml
https://github.com/bitnami/containers/tree/main/bitnami/minio#connecting-to-other-containers
https://docs.docker.com/engine/userguide/networking/
https://github.com/bitnami/containers/tree/main/bitnami/minio#using-the-command-line
https://github.com/bitnami/containers/blob/main/bitnami/minio-client
https://github.com/bitnami/containers/tree/main/bitnami/minio#step-1-create-a-network

Step 2: Launch the MinlO(R) server container

Use the --network app-tier argument to the docker run command to attach the MinlO(R) container to
the app-tier network.

docker run -d --name minio-server \
--env MINIO_ROOT_USER="minio-root-user" \
--env MINIO_ROOT_PASSWORD="minio-root-password" \
--network app-tier \
bitnami/minio:latest

Step 3: Launch your MinlO(R) Client container

Finally we create a new container instance to launch the MinlO(R) client and connect to the server
created in the previous step. In this example, we create a new bucket in the MinlO(R) storage
server:

docker run -it --rm --name minio-client \
--env MINIO_SERVER_HOST="minio-server" \
--env MINIO_SERVER_ACCESS_KEY="minio-access-key" \
--env MINIO_SERVER_SECRET_KEY="minio-secret-key" \
--network app-tier \
bitnami/minio-client \
mb minio/my-bucket

Using a Docker Compose file

When not specified, Docker Compose automatically sets up a new network and attaches all
deployed services to that network. However, we will explicitly define a new bridge network named
app-tier . In this example we assume that you want to connect to the MinlO(R) server from your own
custom application image which is identified in the following snippet by the service name myapp .

version: '2'

networks:
app-tier:
driver: bridge

services:
minio:
image: 'bitnami/minio:latest’
ports:
-'9000:9000'
-'9001:9001'

environment:

https://github.com/bitnami/containers/tree/main/bitnami/minio#step-2-launch-the-minior-server-container
https://github.com/bitnami/containers/tree/main/bitnami/minio#step-3-launch-your-minior-client-container
https://github.com/bitnami/containers/tree/main/bitnami/minio#using-a-docker-compose-file

- MINIO_ROOT_USER=minio-root-user
- MINIO_ROOT_PASSWORD=minio-root-password
networks:
- app-tier
myapp:
image: 'YOUR_APPLICATION_IMAGE'
networks:
- app-tier
environment:
- MINIO_SERVER_ACCESS_KEY=minio-access-key
- MINIO_SERVER_SECRET_KEY=minio-secret-key

44 IMPORTANT:

1. Please update the YOUR_APPLICATION_IMAGE_ placeholder in the
above snippet with your application image

2. In your application container, use the hosthame minio to connect to the
MinlO(R) server. Use the environment variables
MINIO_SERVER_ACCESS KEY and MINIO_SERVER SECRET KEY to configure the
credentials to access the MinlO(R) server.

3. Make sure that the environment variables MINIO ROOT PASSWORD and
MINIO_SERVER_SECRET KEY meet the 8 character minimum length
requirement enforced by MinlO(R).

Launch the containers using:

docker-compose up -d

Configuration

Environment variables

Customizable environment variables

Name Description Default Value
MINIO_DATA_DIR MinlIO directory for data. /bitnami/minio/data

MINIO_API_PORT_NUMBER MinlO API port number. 9000

https://github.com/bitnami/containers/tree/main/bitnami/minio#configuration
https://github.com/bitnami/containers/tree/main/bitnami/minio#environment-variables
https://github.com/bitnami/containers/tree/main/bitnami/minio#customizable-environment-variables

Name

MINIO_CONSOLE_PORT NUMBER

MINIO_SCHEME

MINIO_SKIP_CLIENT

MINIO_DISTRIBUTED_MODE_ENABLED

MINIO_DEFAULT_BUCKETS

MINIO_STARTUP_TIMEOUT

MINIO_SERVER_URL

MINIO_APACHE_CONSOLE_HTTP_PORT_NUMB
ER

MINIO_APACHE_CONSOLE_HTTPS_PORT NUM
BER

MINIO_APACHE_AP|_HTTP_PORT NUMBER

MINIO_APACHE_AP|_HTTPS_PORT NUMBER

MINIO_FORCE_NEW_KEYS

MINIO_ROOT_USER

MINIO_ROOT_PASSWORD

Description
MinlO RMI port number.
MinlO web scheme.
Skip MinlO client configuration.
Enable MinlO distributed mode.
MinlO default buckets.
MinlO startup timeout.
MinlO server external URL.
MinlO Console Ul HTTP port, exposed
via Apache with basic authentication.

MinlO Console Ul HTTPS port, exposed
via Apache with basic authentication.

MinlO APl HTTP port, exposed via
Apache with basic authentication.

MinlO APl HTTPS port, exposed via
Apache with basic authentication.

Force recreating MinlO keys.
MinlO root user name.

Password for MinlO root user.

Read-only environment variables

Name

MINIO_BASE_DIR

MINIO_BIN_DIR

MINIO_CERTS_DIR

MINIO_LOGS_DIR

MINIO_TMP_DIR

MINIO_SECRETS DIR

MINIO_LOG_FILE

MINIO_PID FILE

MINIO_DAEMON_USER

MINIO_DAEMON_GROUP

Description
MinlO installation directory.
MinlO directory for binaries.
MinlO directory for TLS certificates.
MinlO directory for log files.
MinlO directory for log files.
MinlO directory for credentials.
MinlO log file.
MinlO PID file.
MinlO system user.

MinlO system group.

Default Value

9001

http

no

no

nil

10

$MINIO_SCHEME://localhost:$MINIO_API_POR
T_NUMBER

80

443

9000

9443

no

minio

miniosecret

Value
${BITNAMI_ROOT DIR}/minio

${MINIO_BASE_DIR}/bin

/certs

${MINIO_BASE_DIR}/log

${MINIO_BASE_DIR}/tmp

${MINIO_BASE_DIR}/secrets

${MINIO_LOGS_DIR}/minio.log

${MINIO_TMP_DIR}/minio.pid

minio

minio

https://github.com/bitnami/containers/tree/main/bitnami/minio#read-only-environment-variables

Additionally, MinlO can be configured via environment variables as detailed at MinlO(R)

documentation.

A MinlO(R) Client (mc) is also shipped on this image that can be used to perform administrative

tasks as described at the MinlO(R) Client documentation. In the example below, the client is used

to obtain the server info:

docker run --name minio -d bitnami/minio:latest
docker exec minio mc admin info local

or using Docker Compose:

curl -sSL https://raw.githubusercontent.com/bitnami/containers/main/bithami/minio/docker-compose.yml > docker
docker-compose up -d
docker-compose exec minio mc admin info local

Creating default buckets

You can create a series of buckets in the MinlO(R) server during the initialization of the container
by setting the environment variable MINIO_DEFAULT BUCKETS as shown below (policy is optional):

docker run --name minio \
--publish 9000:9000 \
--publish 9001:9001 \
--env MINIO_DEFAULT_BUCKETS="my-first-bucket:policy,my-second-bucket' \
bitnami/minio:latest

or by modifying the docker-compose.yml file present in this repository:

services:
minio:

environment:
- MINIO_DEFAULT_BUCKETS=my-first-bucket:policy,my-second-bucket

Securing access to MinlO(R) server with
TLS

You can secure the access to MinlO(R) server with TLS as detailed at MinlO(R) documentation.

https://docs.min.io/docs/minio-server-configuration-guide.html
https://docs.min.io/docs/minio-server-configuration-guide.html
https://docs.min.io/docs/minio-admin-complete-guide.html
https://github.com/bitnami/containers/tree/main/bitnami/minio#creating-default-buckets
https://github.com/bitnami/containers/blob/main/bitnami/minio/docker-compose.yml
https://github.com/bitnami/containers/tree/main/bitnami/minio#securing-access-to-minior-server-with-tls
https://docs.min.io/docs/how-to-secure-access-to-minio-server-with-tls.html

This image expects the variable MINIO SCHEME set to https and certificates to be mounted at the
/certs directory. You can put your key and certificate files on a local directory and mount it in the
container as shown below:

docker run --name minio \
--publish 9000:9000 \
--publish 9001:9001 \
--volume /path/to/certs:/certs \
--env MINIO_SCHEME=https
bitnami/minio:latest

or by modifying the docker-compose.yml file present in this repository:

services:
minio:

environment:
- MINIO_SCHEME=https

volumes:
- /[path/to/certs:/certs

Setting up MIinlO(R) in Distributed Mode

You can configure MinlO(R) in Distributed Mode to setup a highly-available storage system. To do
so, the environment variables below must be set on each node:

MINIO_DISTRIBUTED_MODE_ENABLED : Set it to 'yes' to enable Distributed Mode.
MINIO_DISTRIBUTED_NODES : List of MinlO(R) nodes hosts. Available separators are ', ',' and

(Y]
'

MINIO_ROOT_USER : MinlO(R) server root user. Must be common on every node.
MINIO_ROOT_PASSWORD : MinlO(R) server root password. Must be common on every node.

You can use the Docker Compose below to create an 4-node distributed MinlO(R) setup:

version: '2'

services:
miniol:
image: 'bitnami/minio:latest’
environment:
- MINIO_ROOT_USER=minio-root-user
- MINIO_ROOT_PASSWORD=minio-root-password
- MINIO_DISTRIBUTED_MODE_ENABLED=yes
- MINIO_DISTRIBUTED_NODES=miniol,minio2,minio3,minio4

https://github.com/bitnami/containers/blob/main/bitnami/minio/docker-compose.yml
https://github.com/bitnami/containers/tree/main/bitnami/minio#setting-up-minior-in-distributed-mode

- MINIO_SKIP_CLIENT=yes
minio2:
image: 'bitnami/minio:latest’
environment:
- MINIO_ROOT_USER=minio-root-user
- MINIO_ROOT_PASSWORD=minio-root-password
- MINIO_DISTRIBUTED_MODE_ENABLED=yes
- MINIO_DISTRIBUTED_NODES=miniol,minio2,minio3,minio4
- MINIO_SKIP_CLIENT=yes
minio3:
image: 'bitnami/minio:latest’
environment:
- MINIO_ROOT_USER=minio-root-user
- MINIO_ROOT_PASSWORD=minio-root-password
- MINIO_DISTRIBUTED_MODE_ENABLED=yes
- MINIO_DISTRIBUTED_NODES=miniol,minio2,minio3,minio4
- MINIO_SKIP_CLIENT=yes
minio4:
image: 'bitnami/minio:latest’
environment:
- MINIO_ROOT_USER=minio-root-user
- MINIO_ROOT_PASSWORD=minio-root-password
- MINIO_DISTRIBUTED_MODE_ENABLED=yes
- MINIO_DISTRIBUTED_NODES=miniol,minio2,minio3,minio4
- MINIO_SKIP_CLIENT=yes

MinlO(R) also supports ellipsis syntax ({1..n}) to list the MinlO(R) node hosts, where n is the
number of nodes. This syntax is also valid to use multiple drives ({1..m}) on each MinlO(R) node,
where n is the number of drives per node. You can use the Docker Compose below to create an 2-
node distributed MinlO(R) setup with 2 drives per node:

version: '2'
services:
minio-0:
image: 'bitnami/minio:latest’
volumes:
- 'minio_0_data_0:/bitnami/minio/data-0'
- 'minio_0_data_1:/bithami/minio/data-1'
environment:
- MINIO_ROOT_USER=minio
- MINIO_ROOT_PASSWORD=miniosecret
- MINIO_DISTRIBUTED_MODE_ENABLED=yes
- MINIO_DISTRIBUTED_NODES=minio-{0...1}/bitnami/minio/data-{0...1}
minio-1:
image: 'bitnami/minio:latest’
volumes:
- 'minio_1_data_0:/bitnami/minio/data-0'
- 'minio_1_data_1:/bithami/minio/data-1'
environment:
- MINIO_ROOT_USER=minio
- MINIO_ROOT_PASSWORD=miniosecret
- MINIO_DISTRIBUTED_MODE_ENABLED=yes

- MINIO_DISTRIBUTED_NODES=minio-{0...1}/bitnami/minio/data-{0...1}
volumes:
minio_0_data_0:
driver: local
minio_0_data_1:
driver: local
minio_1 data O:
driver: local
minio_1 data_1:
driver: local

Find more information about the Distributed Mode in the MinlO(R) documentation.

Reconfiguring Keys on container restarts

MinlO(R) configures the access & secret key during the 1st initialization based on the
MINIO_ROOT_USER and MINIO_ROOT PASSWORD environment variables, respetively.

When using persistence, MinlO(R) will reuse the data configured during the 1st initialization by
default, ignoring whatever values are set on these environment variables. You can force MinlO(R)
to reconfigure the keys based on the environment variables by setting the MINIO_ FORCE_NEW_KEYS
environment variable to yes:

docker run --name minio \
--publish 9000:9000 \
--publish 9001:9001 \
--env MINIO_FORCE_NEW_KEYS="yes" \
--env MINIO_ROOT_USER="new-minio-root-user" \
--env MINIO_ROOT_PASSWORD="new-minio-root-password" \
--volume /path/to/minio-persistence:/bitnami/minio/data \
bitnami/minio:latest

Logging

The Bitnami MinlO(R) Docker image sends the container logs to the stdout . To view the logs:
docker logs minio
or using Docker Compose:

docker-compose logs minio

https://docs.min.io/docs/distributed-minio-quickstart-guide.html
https://github.com/bitnami/containers/tree/main/bitnami/minio#reconfiguring-keys-on-container-restarts
https://github.com/bitnami/containers/tree/main/bitnami/minio#logging

You can configure the containers logging driver using the --log-driver option if you wish to consume
the container logs differently. In the default configuration docker uses the json-file driver.

HTTP log trace

To enable HTTP log trace, you can set the environment variable MINIO HTTP_TRACE to redirect the

logs to a specific file as detailed at MinlO(R) documentation.

When setting this environment variable to /opt/bitnami/minio/log/minio.log , the logs will be sent to the
stdout .

docker run --name minio \
--publish 9000:9000 \
--publish 9001:9001 \
--env MINIO_HTTP_TRACE=/opt/bitnami/minio/log/minio.log \
bitnami/minio:latest

or by modifying the docker-compose.yml! file present in this repository:

services:
minio:

environment:
- MINIO_HTTP_TRACE=/opt/bithami/minio/log/minio.log

Maintenance

Upgrade this image

Bitnami provides up-to-date versions of MinlO(R), including security patches, soon after they are
made upstream. We recommend that you follow these steps to upgrade your container.

Step 1: Get the updated image

docker pull bitnami/minio:latest

or if you're using Docker Compose, update the value of the image property to bitnami/minio:latest .

https://docs.docker.com/engine/admin/logging/overview/
https://github.com/bitnami/containers/tree/main/bitnami/minio#http-log-trace
https://docs.min.io/docs/minio-server-configuration-guide.html
https://github.com/bitnami/containers/blob/main/bitnami/minio/docker-compose.yml
https://github.com/bitnami/containers/tree/main/bitnami/minio#maintenance
https://github.com/bitnami/containers/tree/main/bitnami/minio#upgrade-this-image
https://github.com/bitnami/containers/tree/main/bitnami/minio#step-1-get-the-updated-image

Step 2: Stop and backup the currently running container

Stop the currently running container using the command

docker stop minio
or using Docker Compose:
docker-compose stop minio
Next, take a snapshot of the persistent volume /path/to/minio-persistence using:

rsync -a /path/to/minio-persistence /path/to/minio-persistence.bkp.$(date +%Y%m%d-%H.%M.%S)

Step 3: Remove the currently running container

docker rm -v minio

or using Docker Compose:

docker-compose rm -v minio

Step 4: Run the new image

Re-create your container from the new image.
docker run --name minio bitnami/minio:latest
or using Docker Compose:

docker-compose up minio

Using docker-compose.yam!

Please be aware this file has not undergone internal testing. Consequently, we advise its use
exclusively for development or testing purposes. For production-ready deployments, we highly

recommend utilizing its associated Bithami Helm chart.

https://github.com/bitnami/containers/tree/main/bitnami/minio#step-2-stop-and-backup-the-currently-running-container
https://github.com/bitnami/containers/tree/main/bitnami/minio#step-3-remove-the-currently-running-container
https://github.com/bitnami/containers/tree/main/bitnami/minio#step-4-run-the-new-image
https://github.com/bitnami/containers/tree/main/bitnami/minio#using-docker-composeyaml
https://github.com/bitnami/charts/tree/main/bitnami/minio

If you detect any issue in the docker-compose.yaml file, feel free to report it or contribute with a fix

by following our Contributing Guidelines.

Contributing

We'd love for you to contribute to this Docker image. You can request new features by creating an

issue or submitting a pull request with your contribution.

Issues

If you encountered a problem running this container, you can file an issue. For us to provide better
support, be sure to include the following information in your issue:

Host OS and version

Docker version (docker version)

Output of docker info

Version of this container

e The command you used to run the container, and any relevant output you saw (masking
any sensitive information)

License

Copyright © 2024 Broadcom. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Revision #1
Created 9 November 2024 11:22:10 by Administrador
Updated 9 November 2024 11:27:23 by Administrador

https://github.com/bitnami/containers/blob/main/CONTRIBUTING.md
https://github.com/bitnami/containers/tree/main/bitnami/minio#contributing
https://github.com/bitnami/containers/issues
https://github.com/bitnami/containers/pulls
https://github.com/bitnami/containers/tree/main/bitnami/minio#issues
https://github.com/bitnami/containers/issues/new/choose
https://github.com/bitnami/containers/tree/main/bitnami/minio#license
http://www.apache.org/licenses/LICENSE-2.0

