
Templates de aplicações desenvolvidas em N8N

Local AI with Docker, n8n, Qdrant, and Ollama
Templates N8N utilizando QDRANT
Build a Financial Documents Assistant using Qdrant and Mistral.ai
Links de Aplicações N8N
Distributed Deployment of Qdrant Cluster with Sharding & Replicas

Aplicações N8N
docker

Link: https://www.datacamp.com/tutorial/local-ai

Outros templates disponíveis utilizando o "qdrant":
https://n8n.io/workflows/?integrations=Qdrant%20Vector%20Store
Learn how to build secure, local AI applications that protect your sensitive data using a low/no-code
automation framework.
Nov 1, 2024

Contents

What is Local AI?

Installing Docker

Installing and Running Local AI Applications with Docker Compose

Create the AI Workflow with a n8n Dashboard

Conclusion

Companies worldwide are increasingly concerned about protecting sensitive information while
harnessing the power of AI. This guide presents a comprehensive solution for building secure, local
AI applications using a powerful combination of open-source tools.

We will use the Self-hosted AI Starter Kit to quickly set up a local AI environment. This kit will
automatically run Ollama, Qdrant, n8n, and Postgres. Additionally, we will learn how to build an AI
workflow for a RAG (Retrieval-augmented generation) chatbot using the Harry Potter dataset
through the n8n dashboard.

Whether you are a developer, data scientist, or non-technical professional looking to implement
secure AI solutions, this tutorial will provide you with the foundation to create powerful, self-hosted
AI workflows while maintaining complete control over your sensitive data.

Local AI with Docker, n8n,
Qdrant, and Ollama

https://www.datacamp.com/tutorial/local-ai
https://www.datacamp.com/tutorial/local-ai#what-is-local-ai?-%3Cspan
https://www.datacamp.com/tutorial/local-ai#installing-docker%C2%A0%C2%A0-%3Cspan
https://www.datacamp.com/tutorial/local-ai#installing-and-running-local-ai-applications-with-docker-compose-%3Cspan
https://www.datacamp.com/tutorial/local-ai#create-the-ai-workflow-with-a-n8n-dashboard-%3Cspan
https://www.datacamp.com/tutorial/local-ai#conclusion%C2%A0-%3Cspan
https://github.com/n8n-io/self-hosted-ai-starter-kit

Local AI allows you to run artificial intelligence systems and workflows on your own infrastructure
rather than cloud services, providing enhanced privacy and cost efficiency.

If you are new to the AI ecosystem, you should first check out our skill track on AI Fundamentals to
get up to speed. By completing this series of courses, you will gain actionable knowledge on
popular AI topics such as ChatGPT, large language models, generative AI, and more.

Local AI Feature image.

Image by Author

Here is the list of tools that we will use to build and run our local AI applications:

1. Docker: This is your containerization platform that packages all AI components into
manageable, isolated environments. It will help us run all the AI tools with a single
command.

2. n8n: A workflow automation framework that allows you to build AI workflows using a drag-
and-drop interface. It requires no coding knowledge, making it ideal for non-technical
individuals.

3. Postgres: This tool stores all data and logs, acting as a memory buffer for the n8n
framework.

4. Qdrant: A vector database and search engine that makes AI-generated content searchable
and manageable.

5. Ollama: An AI model manager that enables you to run any open-source large language
model locally with minimal hardware requirements.

The n8n is our primary framework for building the AI workflow for the RAG Chatbot. We will use
Qdrant as the vector store and Ollama as the AI model provider. Together, these components will
help us create the RAG system.

We will download and install the Docker desktop application by going to the official Docker website.
It is quite easy to install and get started.

Learn more about Docker by following the Docker for Data Science tutorial or take our Introduction
to Docker course.

Windows Docker Desktop

What is Local AI?

Installing Docker

https://www.datacamp.com/tracks/ai-fundamentals
https://www.docker.com/
https://www.datacamp.com/tutorial/docker-for-data-science-introduction
https://www.datacamp.com/courses/introduction-to-docker
https://www.datacamp.com/courses/introduction-to-docker

Source: Docker: Accelerated Container Application Development

Windows users need an additional tool to successfully run Docker containers: the Windows
Subsystem for Linux (WSL). This allows developers to install a Linux distribution and use Linux
applications directly on Windows.

To install WSL on Windows, type the following command in the terminal or PowerShell. Make sure
to launch PowerShell as an administrator.

After successfully installing WSL, restart your system. Then, type the following command in
PowerShell to check if Docker is working properly.

Docker successfully pulled the hello-world image and started the container.

Running the Sample Docker Image

In this guide, we will learn how to use Docker Compose to set up AI services locally. This approach
allows you to load Docker images and deploy containers within minutes, providing a simple way to
run and manage multiple AI services on your infrastructure.

First, we will clone n8n-io/self-hosted-ai-starter-kit by typing the following command in the
terminal.

This code snippet consists of two Bash commands:

1. git clone https://github.com/n8n-io/self-hosted-ai-starter-kit.git : This command uses Git to create a
local copy (clone) of the repository located at the specified URL. The repository contains
the "self-hosted-ai-starter-kit" project files.

2. cd self-hosted-ai-starter-kit : This command changes the current directory to the newly cloned
"self-hosted-ai-starter-kit" directory, allowing you to work with the project files.

$ wsl --install

$ docker run hello-world

Installing and Running Local AI
Applications with Docker Compose

$ git clone https://github.com/n8n-io/self-hosted-ai-starter-kit.git
$ cd self-hosted-ai-starter-kit

https://www.docker.com/
https://github.com/n8n-io/self-hosted-ai-starter-kit

Overall, these commands aim to download a project from GitHub and navigate into its
directory to start working on it.

The starter kit is the easiest way to set up the servers and applications needed to build an AI
workflow. Then, we will load the Docker images and run the containers.

The code snippet is a command to start Docker containers using Docker Compose. Here's a
breakdown:

docker compose : This is the command to use Docker Compose, a tool for defining and
running multi-container Docker applications.
--profile cpu : This option specifies a profile named "cpu." Profiles allow you to selectively
enable services defined in your docker-compose.yml file. Only the services associated with
the "cpu" profile will be started.
up : This command starts the containers defined in your docker-compose.yml file. It creates
and starts the containers in the foreground, showing their logs in your terminal.

Overall, this command starts the Docker containers associated with the "cpu" profile, allowing you
to run a specific subset of your application.

If you have an NVIDIA GPU, try typing the command below to access the acceleration in response
generation. Also, set up the NVIDIA GPU for Docker by following the Ollama Docker guide.

The code snippet is a command to start Docker containers using Docker Compose with a specific
profile. Here's a breakdown:

docker compose : This is the command to use Docker Compose, a tool for defining and
running multi-container Docker applications.
--profile gpu-nvidia : This flag specifies a profile named gpu-nvidia . Profiles allow you to
define different sets of services or configurations in your docker-compose.yml file. The gpu-
nvidia profile likely includes services or configurations optimized for NVIDIA GPU usage.
up : This command starts the services defined in the docker-compose.yml file. It builds,
(re)creates, starts, and attaches to containers for a service.

Overall, this command aims to start up the Docker containers associated with the gpu-nvidia
profile, which might be configured to leverage NVIDIA GPUs for tasks like machine learning or other
GPU-intensive applications.

$ docker compose --profile cpu up

$ docker compose --profile gpu-nvidia up

https://github.com/ollama/ollama/blob/main/docs/docker.md

It will take a few minutes as it downloads all the Docker images and then runs the Docker
containers one by one.

Running the Docker Compose script from the AI starter Kit.

All the Docker services are running. The exited Docker containers were used to download the
Llama 3.2 model and import the n8n backup workflow.

Viewing the status of Docker containers.

We can even check the status of running the docker container by typing the following command in
the terminal.

The command docker compose ps is used to list the status of containers defined in a Docker
Compose setup. When you run this command, it shows you a table of all the containers in your
current Docker Compose project, including their names, states (e.g., running, exited), and other
relevant details like ports. This is useful for quickly checking which containers are up and running
and their current status.

The starter kit included the script for downloading the Llama 3.2 model. However, for a proper RAG
Chatbot application, we also need the embedding model. We will go to the Ollama Docker
container, click on the “Exec” tab, and type the following command to download the “nomic-
embed-text” model.

The code snippet is a Bash command that uses the ollama tool to pull a specific resource called
nomic-embed-text .

ollama : This is likely a command-line tool or utility that manages or interacts with
resources or models.
pull : This subcommand is used to download or retrieve the specified resource.
nomic-embed-text : This is the name of the resource or model being pulled.

The command aims to download or update the nomic-embed-text resource to your local environment
using the ollama tool.

As we can see, we can interact with a Docker container as if it were a separate virtual machine.

Executing the command in the Docker container.

$ docker compose ps

$ ollama pull nomic-embed-text

Open the n8n dashboard URL http://localhost:5678/ in your browser to set up an n8n user account
with email and password. Then, click the home button on the main dashboard page and access the
Demo workflow.

The demo is a simple LLM workflow that takes the user input and generates the response.

Sample AI workflow on n8n

To run the workflow, click on the Chat button and start typing your question. Within a few seconds,
a response will be generated.

Please note that we are using a small language model with GPU acceleration, so the response
typically takes only about 2 seconds.

Running the AI workflow on n8n

In this project, we will build a RAG (Retrieval-Augmented Generation) chatbot that uses data from
the Harry Potter movies to provide context-aware and accurate responses. This project is a no-code
solution, meaning all you need to do is search for the necessary workflow components and connect
them to create an AI workflow.

n8n is a no-code platform similar to Langchain. Follow the RAG with Llama 3.1 8B, Ollama, and
Langchain tutorial to get an overview of how to create a similar AI workflow using Langchain.

Click on the “Add the first step” button in the middle of the dashboard, search for the “Chat
Trigger,” and add it.

Adding the Chat trigger to the n8n workflow

Make sure you have enabled “Allow File Uploads”.

activating the allows file uploads option.

Create the AI Workflow with a n8n
Dashboard

1. Adding the chat trigger

2. Adding the Qdrant vector store

https://www.datacamp.com/blog/what-is-retrieval-augmented-generation-rag
https://www.datacamp.com/tutorial/llama-3-1-rag
https://www.datacamp.com/tutorial/llama-3-1-rag

You can add another component called “Qdrant Vector Store” by clicking on the plus (+) button on
the “Chat Trigger” component and searching for it.

Change the operation mode to “Insert Documents,” change the Qdrant collection to “By ID,” and
type the ID as “Harry_Potter.”

Adding the Qdrant Vector Store

When we exit the option, we will see that the chat trigger is connected with our vector store.

connecting the chat trigger with the Qdrant vector store.

Click the plus button under the Qdrant vector store labeled “Embedding.” We will be taken to the
model management menu, where we will select embeddings Ollama and change the model to
“nomic-embed-text:latest.”

Adding the Embedding Ollama model.

Click the plus button under the Qdrant vector store that says “Document,” and select “Default Data
Loader” from the menu. Change the type of the data to “Binary”.

Adding the Default Data loader

Then, add a token splitter with a chunk size of 500 and a chunk overlap of 50 will be added to the
document loader.

Adding the token splitter

This is how our workflow should look in the end. This workflow will take the CSV files from the user,
convert them into text, then transform the text into embeddings and store them in the vector
store.

Data ingestion workflow for vector database.

3. Connecting the embedding model with
vector store

4. Connecting the document loader with
vector store

5. Testing the Qdrant vector store

Click the Chat button at the bottom of the dashboard. Once the chat window opens, click on the file
button as shown below.

adding a single file

In this workflow, we will load all the CSV files from the Harry Potter Movies dataset. However, to
test our workflow, we will only load a single CSV file called 'spell' based on a user query.

adding a single CSV file

You can go to the Qdrant server using the URL http://localhost:6333/dashboard and check if the file
was loaded to the vector store or note.

Qdrant Dashboard

Now, add the rest of the files to the vector store.

adding a multiple file to the vector store

We will connect the chat trigger to the vector store, link it to the AI agent, and change the agent
type to “Conversation Agent.”

Creating the second workflow.

Click the “Chat Model” button under AI agent and select the Ollama Chat model from the menu.
After that, chant the model name to “Llama3.2:latest”.

Connecting the chat model with AI agent

Click the “Tool” button under the AI agent and select the vector store tool from the menu. Provide
the tool name and the description.

Connecting the vector store tool with AI agent.

6. Adding the AI agent

7. Connecting the chat model with AI
agent

8. Connecting the vector store tool with AI
agent

https://www.kaggle.com/datasets/maricinnamon/harry-potter-movies-dataset
http://localhost:6333/dashboard

We need to add components to the vector store tool. First, we will incorporate Qdrant as the vector
store and set the collection ID to "Harry_Potter." This vector store will access the Harry Potter
collection during the similarity search. Additionally, change the operation mode to "Retrieved
Documents."

Qdrant Document Retriever

The vector store tool also requires an LLM model. We will connect the Ollama chat model and
change the model to the “llama3.2:latest”.

Ollama Chat model

In the final step, we will supply the retrieval vector store with the embedding model. This allows it
to convert the user query into an embedding and then convert the embedding back into text for
the LLM to process.

Make sure you provide the correct embedding model for your vector store.

Embedding model

This is how the AI workflow should look like.

Entire AI workflow for RAG Chatbot.

Click the chat button to start asking questions about the Harry Potter universe.

Prompt: “What is the most secret place in Hogwarts?”

9. Connecting the Qdrant retriever with
the vector store tool

10. Connecting the chat model with the
vector store tool

11. Connecting the embedding model with
the Qdrant retriever

12. Testing the AI workflow

Testing the AI workflow 1

Prompt: “What is the most powerful spell?”

Testing the AI workflow 2

Our AI workflow is fast and functioning smoothly. This no-code approach is quite easy to execute.
n8n also allows users to share their applications so that anyone can access them using a link, just
like a ChatGPT.

n8n is a perfect tool for LLM/AI projects, especially for non-technical individuals. Sometimes, we
don’t even have to create the workflow from scratch. All we need to do is search for similar projects
on the n8n website, copy the JSON code, and paste it into our n8n dashboard. It’s that simple.

n8n workflow automation templates.

Source: Discover 900+ Automation Workflows from the n8n's Community

In this tutorial, we learned about local AI and how to use the self-hosted AI starter kit to build and
deploy various AI services. We then launched the n8n dashboard and created our own AI workflow
using Qdrant, embedding models, vector store tools, LLMs, and document loaders. Creating and
executing workflows is quite easy with n8n. If you are new to AI tools and want to learn about no-
code AI solutions, check out our other resources:

No-Code LLMs In Practice with Birago Jones & Karthik Dinakar, CEO & CTO at Pienso
Run LLMs Locally: 7 Simple Methods
LlaMA-Factory WebUI Beginner's Guide: Fine-Tuning LLMs

Conclusion

https://n8n.io/workflows/
https://n8n.io/workflows/
https://www.datacamp.com/podcast/no-code-llms-in-practice
https://www.datacamp.com/tutorial/run-llms-locally-tutorial
https://www.datacamp.com/tutorial/llama-factory-web-ui-guide-fine-tuning-llms

Link: https://n8n.io/workflows/?integrations=Qdrant%20Vector%20Store

https://n8n.io/workflows/2440-building-rag-chatbot-for-movie-recommendations-with-qdrant-and-
open-ai/

Create a recommendation tool without hallucinations based on RAG with the Qdrant Vector
database.
This example is based on movie recommendations on the IMDB-top1000 dataset. You can provide
your wishes and your "big no's" to the chatbot, for example: "A movie about wizards but not Harry
Potter", and get top-3 recommendations. How it works a video with the full design process Upload
IMDB-1000 dataset to Qdrant Vector Store, embedding movie descriptions with OpenAI; Set up an
AI agent with a chat. This agent will call a workflow tool to get movie recommendations based on a
request written in the chat; Create a workflow which calls Qdrant's Recommendation API to retrieve
top-3 recommendations of movies based on your positive and negative examples. Set Up Steps
You'll need to create a free tier Qdrant Cluster (Qdrant can also be used locally; it's open-sourced)
and set up API credentials You'll OpenAI credentials You'll need GitHub credentials & to upload the
IMDB Kaggle dataset to your GitHub.

https://n8n.io/workflows/2464-scale-deal-flow-with-a-pitch-deck-ai-vision-chatbot-and-qdrant-
vector-store/

Templates N8N utilizando
QDRANT

Building RAG Chatbot for Movie
Recommendations with Qdrant and Open
AI

Scale Deal Flow with a Pitch Deck AI
Vision, Chatbot and QDrant Vector Store

https://n8n.io/workflows/2440-building-rag-chatbot-for-movie-recommendations-with-qdrant-and-open-ai/
https://n8n.io/workflows/2440-building-rag-chatbot-for-movie-recommendations-with-qdrant-and-open-ai/
https://n8n.io/workflows/2464-scale-deal-flow-with-a-pitch-deck-ai-vision-chatbot-and-qdrant-vector-store/
https://n8n.io/workflows/2464-scale-deal-flow-with-a-pitch-deck-ai-vision-chatbot-and-qdrant-vector-store/

Are you a popular tech startup accelerator (named after a particular higher order function)
overwhelmed with 1000s of pitch decks on a daily basis? Wish you could filter through them quickly
using AI but the decks are unparseable through conventional means? Then you're in luck!

This n8n template uses Multimodal LLMs to parse and extract valuable data from even the most
overly designed pitch decks in quick fashion. Not only that, it'll also create the foundations of a
RAG chatbot at the end so you or your colleagues can drill down into the details if needed. With
this template, you'll scale your capacity to find interesting companies you'd otherwise miss!

https://n8n.io/workflows/2335-build-a-financial-documents-assistant-using-qdrant-and-mistralai/

This n8n workflow demonstrates how to manage your Qdrant vector store when there is a need to
keep it in sync with local files. It covers creating, updating and deleting vector store records
ensuring our chatbot assistant is never outdated or misleading.

This workflow depends on local files accessed through the local filesystem and so will only work on
a self-hosted version of n8n at this time. It is possible to amend this workflow to work on n8n cloud
by replacing the local file trigger and read file nodes.

This n8n template is one of a 3-part series exploring use-cases for clustering vector embeddings:
Survey Insights Customer Insights Community Insights This template

Build a Financial Documents Assistant
using Qdrant and Mistral.ai

Customer Insights with Qdrant, Python
and Information Extractor

https://n8n.io/workflows/2335-build-a-financial-documents-assistant-using-qdrant-and-mistralai/

Link: https://n8n.io/workflows/2335-build-a-financial-documents-assistant-using-qdrant-and-
mistralai/

Click to explore

Template description
This n8n workflow demonstrates how to manage your Qdrant vector store when there is a need to
keep it in sync with local files. It covers creating, updating and deleting vector store records
ensuring our chatbot assistant is never outdated or misleading.

This workflow depends on local files accessed through the local filesystem and so will only work on
a self-hosted version of n8n at this time. It is possible to amend this workflow to work on n8n cloud
by replacing the local file trigger and read file nodes.

A local directory where bank statements are downloaded to is monitored via a local file
trigger. The trigger watches for the file create, file changed and file deleted events.
When a file is created, its contents are uploaded to the vector store.
When a file is updated, its previous records are replaced.
When the file is deleted, the corresponding records are also removed from the vector
store.

Build a Financial Documents
Assistant using Qdrant and
Mistral.ai

Disclaimer

How it works

https://n8n.io/workflows/2335-build-a-financial-documents-assistant-using-qdrant-and-mistralai/
https://n8n.io/workflows/2335-build-a-financial-documents-assistant-using-qdrant-and-mistralai/

A simple Question and Answer Chatbot is setup to answer any questions about the bank
statements in the system.

A self-hosted version of n8n. Some of the nodes used in this workflow only work with the
local filesystem.
Qdrant instance to store the records.

This workflow can also work with remote data. Try integrating accounting or CRM software to build
a managed system for payroll, invoices and more.

A version of this workflow is available which uses Ollama instead. You can download this template
here: https://drive.google.com/file/d/189F1fNOiw6naNSlSwnyLVEm_Ho_IFfdM/view?usp=sharing

Requirements

Customising the workflow

Want to go fully local?

https://drive.google.com/file/d/189F1fNOiw6naNSlSwnyLVEm_Ho_IFfdM/view?usp=sharing

Links de Aplicações N8N
Popular ways to use Read/Write Files from Disk integration

https://n8n.io/integrations/readwrite-files-from-disk/

Link: https://medium.com/@vardhanam.daga/distributed-deployment-of-qdrant-cluster-with-
sharding-replicas-e7923d483ebc

May 24, 2024

In this blog, we are going to address the challenges faced by a single node Qdrant setup. And then
we are going to demonstrate how we can overcome it by deploying a distributed node setup. By
the end of this blog, you will have both a conceptual understanding of distributed networks as well
as the technical know-hows of setting it up.

To understand what distributed deployment is, it is important to first understand the following
features:

Distributed Deployment of
Qdrant Cluster with Sharding
& Replicas

Segregating your vector data into multiple nodes to
enhance resiliency, scalability, and performance.

Problem Statement

Key Features of a Distributed
Deployment Setup in Qdrant

https://medium.com/@vardhanam.daga/distributed-deployment-of-qdrant-cluster-with-sharding-replicas-e7923d483ebc
https://medium.com/@vardhanam.daga/distributed-deployment-of-qdrant-cluster-with-sharding-replicas-e7923d483ebc

A single node Qdrant setup uses one server to store and manage all the data and processes. It is
less expensive and simpler to set up, but has notable drawbacks. If the server goes down for any
reason, such as maintenance or a breakdown, the entire Qdrant service will become unavailable.
Furthermore, the performance of the service is limited to what a single server can handle.

A Qdrant Cluster is a more advanced setup that involves multiple servers, known as nodes, working
together. This arrangement distributes the data and workload among several servers, which offers
multiple benefits over a single node setup. It’s more resilient because if one server has an issue,
the others can keep the service running. It also allows for scalability, meaning more servers can be
added as needed to handle more data or more user requests, thus enhancing overall performance.

In a cluster, the servers communicate using the Raft consensus protocol. This protocol helps keep
the servers synchronized, ensuring that they all agree upon any changes or updates before they
are made. This coordination is crucial for maintaining data accuracy and consistency across the
cluster.

For operations on individual points though, Qdrant prioritizes speed and availability over strict
adherence to this protocol, which allows for faster processing without the complexity of
coordinating every detail across all servers.

Sharding is a technique to break down a database into different segments. In Qdrant, a collection
can be divided into multiple shards, each representing a self-contained store of points.

This distribution allows for parallel processing of search requests, leading to significant
performance improvements. Qdrant supports both automatic sharding, where points are
distributed based on a consistent hashing algorithm, and user-defined sharding, offering more
control over data placement for specific use cases.

Single Node Qdrant

Qdrant Cluster

Cluster Communication

Sharding

https://qdrant.tech/documentation/quick-start/

Distributed development, which involves spreading out data and processing across multiple
locations or servers, is essential for creating systems that are reliable and can scale according to
demand. In the context of Qdrant, this approach offers several key advantages:

- Resilience: By distributing operations across multiple servers, the system can still function even
if one server fails.

- Scalability: It’s easier to handle more data and more users by adding more servers to the
system.

- Performance: Distributing the workload helps speed up data processing and retrieval by
allowing multiple operations to run in parallel across different servers.

We’ll use Docker Compose to launch a 4-node Qdrant Cluster setup. First create a file called
docker-compose.yml and paste the following in it:

Importance of Distributed
Development

How to Launch a Multi-Node
Cluster on Qdrant

services:
 qdrant_node1:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node1
 volumes:
 - ./data/node1:/qdrant/storage
 ports:
 - "6333:6333"
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --uri http://qdrant_node1:6335"

 qdrant_node2:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node2

The Docker Compose file defines four services, each corresponding to a Qdrant node in the cluster.
Here’s what each section generally specifies:

Common elements for all nodes:

image: Specifies the Docker image to use for the container. All nodes use
qdrant/qdrant:v1.9.1.
container_name: Assigns a unique name to each container running a Qdrant node.
volumes: Maps a local directory (./data/nodeX) to a directory inside the container
(/qdrant/storage). This setup is used for data persistence across container restarts.
environment: Sets environment variables inside the container.
QDRANT__CLUSTER__ENABLED: “true” enables cluster mode in each Qdrant node.

Specifics for individual nodes:

qdrant_node1
ports: Maps port 6333 on the host to port 6333 on the container, used for API access to
the Qdrant service.

 volumes:
 - ./data/node2:/qdrant/storage
 depends_on:
 - qdrant_node1
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --bootstrap http://qdrant_node1:6335 --uri http://qdrant_node2:6335"

 qdrant_node3:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node3
 volumes:
 - ./data/node3:/qdrant/storage
 depends_on:
 - qdrant_node1
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --bootstrap http://qdrant_node1:6335 --uri http://qdrant_node3:6335"

 qdrant_node4:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node4
 volumes:
 - ./data/node4:/qdrant/storage
 depends_on:
 - qdrant_node1
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --bootstrap http://qdrant_node1:6335 --uri http://qdrant_node4:6335"

command: Specifies the command to run inside the container. For qdrant_node1, it
initializes with its own URI for cluster communication (http://qdrant_node1:6335).
qdrant_node2, qdrant_node3, qdrant_node4
depends_on: Ensures that these nodes start only after qdrant_node1 has started. This
dependency is crucial because the subsequent nodes need to connect to the first node for
cluster setup.
command: For these nodes, the command includes both a — bootstrap option pointing to
qdrant_node1 (to join the cluster) and a — uri with their own unique URI. This setup is
necessary for proper communication within the cluster.

To launch the cluster, run the following command:

Now you can access the cluster via the Qdrant client:

Next, let’s define the collection and the shard_key.

Shard Number implies the number of shards per Shard Key. Replication factor implies the number
of times the shards are replicated evenly across all the nodes.

In this case, since we have defined only 1 Shard Key, the total number of Physical Shards would be
1*6*2 = 12.

docker-compose up

from qdrant_client import QdrantClient

Initialize the Qdrant client
client = QdrantClient(host="localhost", port=6333)

collection_name = "sharding_collection"
key = "tempKey"

Deleting an existing collection if it exists
response = client.delete_collection(collection_name=f"{collection_name}")

Creating a new collection with specific configuration
response = client.create_collection(
 collection_name=f"{collection_name}",
 shard_number=6,
 sharding_method=models.ShardingMethod.CUSTOM,
 vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
 replication_factor= 2,
)

Creating a shard key for the collection
response = client.create_shard_key(f"{collection_name}", f"{key}")

Now let’s input some random vectors into our cluster using the shard key.

If we have configured our setup to be a 3+ node cluster with a replication factor of at least 2, then
even if we stop one node, it’s not going to affect any operations going on in the cluster.

Let’s test that out.

First get ids of the containers using:

Counter for generating unique point IDs
point_counter = 0

Function to generate a random vector of 768 dimensions with up to 15 decimal points
def generate_random_vector():
 return [round(random.uniform(0, 1), 15) for _ in range(768)]

Run the loop 1000 times
for _ in range(1000):
 random_vector = generate_random_vector()
 point_counter += 1
 response = client.upsert(
 collection_name=f"{collection_name}",
 points=[
 models.PointStruct(
 id=point_counter,
 vector=random_vector,
),
],
 shard_key_selector=f"{key}",
)

What Happens When We
Turn Off a Node?

docker ps

Now let’s stop qdrant_node3.

Next, let’s investigate our collection.

docker stop 0b7fac4c224a

Even though we switched off a node, we can still access all the points we’ve inserted into our
collection!

To see how the data is distributed amongst the shards, we need to make a GET request in the
following manner.

Data Distribution between
Shards

curl localhost:6333/collections/sharding_collection/cluster

{“result”:{“peer_id”:2024384091823610,”shard_count”:6,”local_shards”:[{“shard_id”:2,”shard_ke
y”:”tempKey”,”points_count”:135,”state”:”Active”},{“shard_id”:4,”shard_key”:”tempKey”,”points_
count”:178,”state”:”Active”},{“shard_id”:6,”shard_key”:”tempKey”,”points_count”:155,”state”:”Ac
tive”}],”remote_shards”:[{“shard_id”:1,”shard_key”:”tempKey”,”peer_id”:8555640407930483,”sta
te”:”Active”},{“shard_id”:1,”shard_key”:”tempKey”,”peer_id”:3252676105267795,”state”:”Active”
},{“shard_id”:2,”shard_key”:”tempKey”,”peer_id”:3088601394550397,”state”:”Active”},{“shard_i
d”:3,”shard_key”:”tempKey”,”peer_id”:8555640407930483,”state”:”Active”},{“shard_id”:3,”shard
_key”:”tempKey”,”peer_id”:3252676105267795,”state”:”Active”},{“shard_id”:4,”shard_key”:”tem
pKey”,”peer_id”:3088601394550397,”state”:”Active”},{“shard_id”:5,”shard_key”:”tempKey”,”peer
_id”:3252676105267795,”state”:”Active”},{“shard_id”:5,”shard_key”:”tempKey”,”peer_id”:855564
0407930483,”state”:”Active”},{“shard_id”:6,”shard_key”:”tempKey”,”peer_id”:308860139455039
7,”state”:”Active”}],”shard_transfers”:[]},”status”:”ok”,”time”:0.000067336}

To know the node by their peer_id, we’ll run:

{“result”:{“status”:”enabled”,”peer_id”:2024384091823610,”peers”:{“3252676105267795”:{“uri
”:”http://qdrant_node2:6335/"},"8555640407930483":{"uri":"http://qdrant_node3:6335/"},"202438
4091823610":{"uri":"http://qdrant_node1:6335/"},"3088601394550397":{"uri":"http://qdrant_node
4:6335/"}},"raft_info":{"term":10,"commit":40,"pending_operations":0,"leader":202438409182361
0,"role":"Leader","is_voter":true},"consensus_thread_status":{"consensus_thread_status":"working
","last_update":"2024-05-
22T13:26:49.305470782Z"},"message_send_failures":{}},"status":"ok","time":0.000058492}

Analyzing the above results, and putting them in a clear format, we get:

Node1 (current peer) has shards 2, 4, and 6.
Node 3 has shards 1, 3, and 5.
Node 2 has shards 1, 3, and 5.
Node 4 has shards 2, 4, and 6.

By looking at the above distribution we see that each shard is available on 2 different nodes, and
therefore even if one of the nodes fails, the cluster will continue to function.

Multi-node clusters, sharding, and replicas are essential features for production environments.
Multi-node clusters distribute the workload and enhance system resilience against individual node
failures. Sharding divides data across multiple nodes, facilitating parallel processing that boosts
performance and scalability. Replication ensures data availability, even if some nodes fail.
Together, these techniques can create a robust and fault-tolerant system capable of reliably
handling production-level demands.

curl http://localhost:6333/cluster

Final Words

https://qdrant.tech/documentation/guides/distributed_deployment/

https://github.com/Mohitkr95/qdrant-multi-node-cluster/tree/main

References

https://qdrant.tech/documentation/guides/distributed_deployment/
https://github.com/Mohitkr95/qdrant-multi-node-cluster/tree/main

