
Link: https://medium.com/@vardhanam.daga/distributed-deployment-of-qdrant-cluster-with-
sharding-replicas-e7923d483ebc

May 24, 2024

In this blog, we are going to address the challenges faced by a single node Qdrant setup. And then
we are going to demonstrate how we can overcome it by deploying a distributed node setup. By
the end of this blog, you will have both a conceptual understanding of distributed networks as well
as the technical know-hows of setting it up.

To understand what distributed deployment is, it is important to first understand the following
features:

Distributed Deployment of
Qdrant Cluster with Sharding
& Replicas

Segregating your vector data into multiple nodes to
enhance resiliency, scalability, and performance.

Problem Statement

Key Features of a Distributed
Deployment Setup in Qdrant

https://medium.com/@vardhanam.daga/distributed-deployment-of-qdrant-cluster-with-sharding-replicas-e7923d483ebc
https://medium.com/@vardhanam.daga/distributed-deployment-of-qdrant-cluster-with-sharding-replicas-e7923d483ebc

A single node Qdrant setup uses one server to store and manage all the data and processes. It is
less expensive and simpler to set up, but has notable drawbacks. If the server goes down for any
reason, such as maintenance or a breakdown, the entire Qdrant service will become unavailable.
Furthermore, the performance of the service is limited to what a single server can handle.

A Qdrant Cluster is a more advanced setup that involves multiple servers, known as nodes, working
together. This arrangement distributes the data and workload among several servers, which offers
multiple benefits over a single node setup. It’s more resilient because if one server has an issue,
the others can keep the service running. It also allows for scalability, meaning more servers can be
added as needed to handle more data or more user requests, thus enhancing overall performance.

In a cluster, the servers communicate using the Raft consensus protocol. This protocol helps keep
the servers synchronized, ensuring that they all agree upon any changes or updates before they
are made. This coordination is crucial for maintaining data accuracy and consistency across the
cluster.

For operations on individual points though, Qdrant prioritizes speed and availability over strict
adherence to this protocol, which allows for faster processing without the complexity of
coordinating every detail across all servers.

Sharding is a technique to break down a database into different segments. In Qdrant, a collection
can be divided into multiple shards, each representing a self-contained store of points.

This distribution allows for parallel processing of search requests, leading to significant
performance improvements. Qdrant supports both automatic sharding, where points are
distributed based on a consistent hashing algorithm, and user-defined sharding, offering more
control over data placement for specific use cases.

Single Node Qdrant

Qdrant Cluster

Cluster Communication

Sharding

https://qdrant.tech/documentation/quick-start/

Distributed development, which involves spreading out data and processing across multiple
locations or servers, is essential for creating systems that are reliable and can scale according to
demand. In the context of Qdrant, this approach offers several key advantages:

- Resilience: By distributing operations across multiple servers, the system can still function even
if one server fails.

- Scalability: It’s easier to handle more data and more users by adding more servers to the
system.

- Performance: Distributing the workload helps speed up data processing and retrieval by
allowing multiple operations to run in parallel across different servers.

We’ll use Docker Compose to launch a 4-node Qdrant Cluster setup. First create a file called
docker-compose.yml and paste the following in it:

Importance of Distributed
Development

How to Launch a Multi-Node
Cluster on Qdrant

services:
 qdrant_node1:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node1
 volumes:
 - ./data/node1:/qdrant/storage
 ports:
 - "6333:6333"
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --uri http://qdrant_node1:6335"

 qdrant_node2:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node2

The Docker Compose file defines four services, each corresponding to a Qdrant node in the cluster.
Here’s what each section generally specifies:

Common elements for all nodes:

image: Specifies the Docker image to use for the container. All nodes use
qdrant/qdrant:v1.9.1.
container_name: Assigns a unique name to each container running a Qdrant node.
volumes: Maps a local directory (./data/nodeX) to a directory inside the container
(/qdrant/storage). This setup is used for data persistence across container restarts.
environment: Sets environment variables inside the container.
QDRANT__CLUSTER__ENABLED: “true” enables cluster mode in each Qdrant node.

Specifics for individual nodes:

qdrant_node1
ports: Maps port 6333 on the host to port 6333 on the container, used for API access to
the Qdrant service.

 volumes:
 - ./data/node2:/qdrant/storage
 depends_on:
 - qdrant_node1
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --bootstrap http://qdrant_node1:6335 --uri http://qdrant_node2:6335"

 qdrant_node3:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node3
 volumes:
 - ./data/node3:/qdrant/storage
 depends_on:
 - qdrant_node1
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --bootstrap http://qdrant_node1:6335 --uri http://qdrant_node3:6335"

 qdrant_node4:
 image: qdrant/qdrant:v1.9.1
 container_name: qdrant_node4
 volumes:
 - ./data/node4:/qdrant/storage
 depends_on:
 - qdrant_node1
 environment:
 QDRANT__CLUSTER__ENABLED: "true"
 command: "./qdrant --bootstrap http://qdrant_node1:6335 --uri http://qdrant_node4:6335"

command: Specifies the command to run inside the container. For qdrant_node1, it
initializes with its own URI for cluster communication (http://qdrant_node1:6335).
qdrant_node2, qdrant_node3, qdrant_node4
depends_on: Ensures that these nodes start only after qdrant_node1 has started. This
dependency is crucial because the subsequent nodes need to connect to the first node for
cluster setup.
command: For these nodes, the command includes both a — bootstrap option pointing to
qdrant_node1 (to join the cluster) and a — uri with their own unique URI. This setup is
necessary for proper communication within the cluster.

To launch the cluster, run the following command:

Now you can access the cluster via the Qdrant client:

Next, let’s define the collection and the shard_key.

Shard Number implies the number of shards per Shard Key. Replication factor implies the number
of times the shards are replicated evenly across all the nodes.

In this case, since we have defined only 1 Shard Key, the total number of Physical Shards would be
1*6*2 = 12.

docker-compose up

from qdrant_client import QdrantClient

Initialize the Qdrant client
client = QdrantClient(host="localhost", port=6333)

collection_name = "sharding_collection"
key = "tempKey"

Deleting an existing collection if it exists
response = client.delete_collection(collection_name=f"{collection_name}")

Creating a new collection with specific configuration
response = client.create_collection(
 collection_name=f"{collection_name}",
 shard_number=6,
 sharding_method=models.ShardingMethod.CUSTOM,
 vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
 replication_factor= 2,
)

Creating a shard key for the collection
response = client.create_shard_key(f"{collection_name}", f"{key}")

Now let’s input some random vectors into our cluster using the shard key.

If we have configured our setup to be a 3+ node cluster with a replication factor of at least 2, then
even if we stop one node, it’s not going to affect any operations going on in the cluster.

Let’s test that out.

First get ids of the containers using:

Counter for generating unique point IDs
point_counter = 0

Function to generate a random vector of 768 dimensions with up to 15 decimal points
def generate_random_vector():
 return [round(random.uniform(0, 1), 15) for _ in range(768)]

Run the loop 1000 times
for _ in range(1000):
 random_vector = generate_random_vector()
 point_counter += 1
 response = client.upsert(
 collection_name=f"{collection_name}",
 points=[
 models.PointStruct(
 id=point_counter,
 vector=random_vector,
),
],
 shard_key_selector=f"{key}",
)

What Happens When We
Turn Off a Node?

docker ps

Now let’s stop qdrant_node3.

Next, let’s investigate our collection.

docker stop 0b7fac4c224a

Even though we switched off a node, we can still access all the points we’ve inserted into our
collection!

To see how the data is distributed amongst the shards, we need to make a GET request in the
following manner.

Data Distribution between
Shards

curl localhost:6333/collections/sharding_collection/cluster

{“result”:{“peer_id”:2024384091823610,”shard_count”:6,”local_shards”:[{“shard_id”:2,”shard_ke
y”:”tempKey”,”points_count”:135,”state”:”Active”},{“shard_id”:4,”shard_key”:”tempKey”,”points_
count”:178,”state”:”Active”},{“shard_id”:6,”shard_key”:”tempKey”,”points_count”:155,”state”:”Ac
tive”}],”remote_shards”:[{“shard_id”:1,”shard_key”:”tempKey”,”peer_id”:8555640407930483,”sta
te”:”Active”},{“shard_id”:1,”shard_key”:”tempKey”,”peer_id”:3252676105267795,”state”:”Active”
},{“shard_id”:2,”shard_key”:”tempKey”,”peer_id”:3088601394550397,”state”:”Active”},{“shard_i
d”:3,”shard_key”:”tempKey”,”peer_id”:8555640407930483,”state”:”Active”},{“shard_id”:3,”shard
_key”:”tempKey”,”peer_id”:3252676105267795,”state”:”Active”},{“shard_id”:4,”shard_key”:”tem
pKey”,”peer_id”:3088601394550397,”state”:”Active”},{“shard_id”:5,”shard_key”:”tempKey”,”peer
_id”:3252676105267795,”state”:”Active”},{“shard_id”:5,”shard_key”:”tempKey”,”peer_id”:855564
0407930483,”state”:”Active”},{“shard_id”:6,”shard_key”:”tempKey”,”peer_id”:308860139455039
7,”state”:”Active”}],”shard_transfers”:[]},”status”:”ok”,”time”:0.000067336}

To know the node by their peer_id, we’ll run:

{“result”:{“status”:”enabled”,”peer_id”:2024384091823610,”peers”:{“3252676105267795”:{“uri
”:”http://qdrant_node2:6335/"},"8555640407930483":{"uri":"http://qdrant_node3:6335/"},"202438
4091823610":{"uri":"http://qdrant_node1:6335/"},"3088601394550397":{"uri":"http://qdrant_node
4:6335/"}},"raft_info":{"term":10,"commit":40,"pending_operations":0,"leader":202438409182361
0,"role":"Leader","is_voter":true},"consensus_thread_status":{"consensus_thread_status":"working
","last_update":"2024-05-
22T13:26:49.305470782Z"},"message_send_failures":{}},"status":"ok","time":0.000058492}

Analyzing the above results, and putting them in a clear format, we get:

Node1 (current peer) has shards 2, 4, and 6.
Node 3 has shards 1, 3, and 5.
Node 2 has shards 1, 3, and 5.
Node 4 has shards 2, 4, and 6.

By looking at the above distribution we see that each shard is available on 2 different nodes, and
therefore even if one of the nodes fails, the cluster will continue to function.

Multi-node clusters, sharding, and replicas are essential features for production environments.
Multi-node clusters distribute the workload and enhance system resilience against individual node
failures. Sharding divides data across multiple nodes, facilitating parallel processing that boosts
performance and scalability. Replication ensures data availability, even if some nodes fail.
Together, these techniques can create a robust and fault-tolerant system capable of reliably
handling production-level demands.

curl http://localhost:6333/cluster

Final Words

https://qdrant.tech/documentation/guides/distributed_deployment/

https://github.com/Mohitkr95/qdrant-multi-node-cluster/tree/main

References

Revision #1
Created 15 December 2024 00:06:43 by Administrador
Updated 15 December 2024 00:08:59 by Administrador

https://qdrant.tech/documentation/guides/distributed_deployment/
https://github.com/Mohitkr95/qdrant-multi-node-cluster/tree/main

