
Procedimentos de instalação Nextcloud Docker

Nextcloud Docker oficial instalação

Instalação
Nextcloud Docker

Link: https://github.com/nextcloud/docker

18/05/2025

A safe home for all your data. Access & share your files, calendars, contacts, mail & more from any
device, on your terms.

logo

⚠️⚠️⚠️ This image is maintained by community volunteers and designed for expert use. For quick
and easy deployment that supports the full set of Nextcloud Hub features, use the Nextcloud All-in-
One docker container maintained by Nextcloud GmbH.

This image is designed to be used in a micro-service environment. There are two versions of the
image you can choose from.

The apache tag contains a full Nextcloud installation including an apache web server. It is designed
to be easy to use and gets you running pretty fast. This is also the default for the latest tag and
version tags that are not further specified.

The second option is a fpm container. It is based on the php-fpm image and runs a fastCGI-Process
that serves your Nextcloud page. To use this image it must be combined with any webserver that
can proxy the http requests to the FastCGI-port of the container.

Try in PWD

Most Nextcloud Server administrative matters are covered in the official Nextcloud Admin Manual
 or other official Nextcloud documentation (which are all routinely updated).

Nextcloud Docker oficial
instalação

What is Nextcloud?

How to use this image

Getting help

https://github.com/nextcloud/docker
https://github.com/nextcloud/docker#what-is-nextcloud
https://camo.githubusercontent.com/5acd203ccf6471ec71f5a40928aab3e2cf856addda38015e184e283d1a64a56d/68747470733a2f2f63646e2e7261776769742e636f6d2f6e657874636c6f75642f646f636b65722f303731623838386637663638396361613632633134393862366336316362333539396263656132622f6c6f676f2e737667
https://github.com/nextcloud/all-in-one#nextcloud-all-in-one
https://github.com/nextcloud/all-in-one#nextcloud-all-in-one
https://github.com/nextcloud/docker#how-to-use-this-image
https://hub.docker.com/_/php/
http://play-with-docker.com/?stack=https://raw.githubusercontent.com/nextcloud/docker/8db861d67f257a3e9ac1790ea06d4e2a7a193a6c/stack.yml
https://github.com/nextcloud/docker#getting-help
https://docs.nextcloud.com/server/latest/admin_manual/
https://docs.nextcloud.com/

Discourse Users Discourse Posts

If you have any problems or usage questions while using the image, please ask for
assistance on the Nextcloud Community Help Forum rather than reporting them as "bugs"
(unless they are bugs of course). This helps the maintainers (who are volunteers) remain focused
on making the image better (rather than responding solely to one-on-one support issues). (Tip:
Some of the maintainers are also regular responders to help requests on the community help
forum.)

For the image specifically, we provide some simple deployment examples as well as some more
extensive deployment examples. In addition, the community help forum has a "how-to" section
with further examples of other peoples' container based Nextcloud stacks.

Below you'll find the main documentation for using this image.

The apache image contains a webserver and exposes port 80. To start the container type:

Now you can access Nextcloud at http://localhost:8080/ from your host system.

WARNING: This example is only suitable for limited testing purposes. Please read on to understand
how the image handles storing your data and other aspects you need to consider to establish a full
Nextcloud stack.

To use the fpm image, you need an additional web server, such as nginx, that can proxy http-
request to the fpm-port of the container. For fpm connection this container exposes port 9000. In
most cases, you might want to use another container or your host as proxy. If you use your host
you can address your Nextcloud container directly on port 9000. If you use another container,
make sure that you add them to the same docker network (via docker run --network <NAME> ... or a
docker compose file). In both cases you don't want to map the fpm port to your host.

As the fastCGI-Process is not capable of serving static files (style sheets, images, ...), the webserver
needs access to these files. This can be achieved with the volumes-from option. You can find more
information in the docker compose section.

Using the apache image

$ docker run -d -p 8080:80 nextcloud

Using the fpm image

$ docker run -d nextcloud:fpm

Using an external database

https://help.nextcloud.com/
https://help.nextcloud.com/
https://help.nextcloud.com/
https://help.nextcloud.com/
https://help.nextcloud.com/
https://github.com/nextcloud/docker/?tab=readme-ov-file#running-this-image-with-docker-compose
https://github.com/nextcloud/docker/tree/master/.examples
https://help.nextcloud.com/
https://github.com/nextcloud/docker#using-the-apache-image
http://localhost:8080/
https://github.com/nextcloud/docker#using-the-fpm-image
https://docs.nextcloud.com/server/latest/admin_manual/installation/nginx.html
https://github.com/nextcloud/docker#running-this-image-with-docker-compose

By default, this container uses SQLite for data storage but the Nextcloud setup wizard (appears on
first run) allows connecting to an existing MySQL/MariaDB or PostgreSQL database. You can also
link a database container, e. g. --link my-mysql:mysql , and then use mysql as the database host on
setup. More info is in the docker compose section.

The Nextcloud installation and all data beyond what lives in the database (file uploads, etc.) are
stored in the unnamed docker volume volume /var/www/html . The docker daemon will store that
data within the docker directory /var/lib/docker/volumes/... . That means your data is saved even if the
container crashes, is stopped or deleted.

A named Docker volume or a mounted host directory should be used for upgrades and backups. To
achieve this, you need one volume for your database container and one for Nextcloud.

Nextcloud:

/var/www/html/ folder where all Nextcloud data lives

Database:

/var/lib/mysql MySQL / MariaDB Data
/var/lib/postgresql/data PostgreSQL Data

If you want to get fine grained access to your individual files, you can mount additional volumes for
data, config, your theme and custom apps. The data , config files are stored in respective
subfolders inside /var/www/html/ . The apps are split into core apps (which are shipped with
Nextcloud and you don't need to take care of) and a custom_apps folder. If you use a custom theme
it would go into the themes subfolder.

Overview of the folders that can be mounted as volumes:

/var/www/html Main folder, needed for updating
/var/www/html/custom_apps installed / modified apps
/var/www/html/config local configuration

Persistent data

$ docker run -d \
-v nextcloud:/var/www/html \
nextcloud

$ docker run -d \
-v db:/var/lib/mysql \
mariadb:lts

Additional volumes

https://github.com/nextcloud/docker#using-an-external-database
https://github.com/nextcloud/docker/?tab=readme-ov-file#running-this-image-with-docker-compose
https://github.com/nextcloud/docker#persistent-data
https://docs.docker.com/engine/tutorials/dockervolumes/#adding-a-data-volume
https://github.com/nextcloud/docker#additional-volumes

/var/www/html/data the actual data of your Nextcloud
/var/www/html/themes/<YOUR_CUSTOM_THEME> theming/branding

If you want to use named volumes for all of these, it would look like this:

If you'd prefer to use bind mounts instead of named volumes, for instance, when working with
different device or network mounts for user data files and configuration:

Here’s the same example using Docker's more detailed --mount . Note that with -v or --volume , the
specified folders are created automatically if they don't exist. However, when using --mount for
bind mounts, the directories must already exist on the host, or Docker will return an error.

The examples above use figurative directory /path/on/host/to/folder/ for bind mounts. Please modify
the paths by using either a relative or absolute path.

NOTE: Do not confuse the apps and custom_apps folders. These folders contain different sets of
apps, and mixing them will result in a broken installation. The former contains "shipped" apps,
which come with Nextcloud Server. The latter contains apps you install from the App Store.

If mounting additional volumes under /var/www/html , you should consider:

$ docker run -d \
-v nextcloud:/var/www/html \
-v custom_apps:/var/www/html/custom_apps \
-v config:/var/www/html/config \
-v data:/var/www/html/data \
-v theme:/var/www/html/themes/<YOUR_CUSTOM_THEME> \
nextcloud

$ docker run -d \
-v /path/on/host/to/folder/nextcloud:/var/www/html \
-v /path/on/host/to/folder/custom_apps:/var/www/html/custom_apps \
-v /path/on/host/to/folder/config:/var/www/html/config \
-v /path/on/host/to/folder/data:/var/www/html/data \
-v /path/on/host/to/folder/theme:/var/www/html/themes/<YOUR_CUSTOM_THEME> \
nextcloud

$ docker run -d \
--mount type=bind,source=/path/on/host/to/folder/nextcloud,target=/var/www/html \
--mount type=bind,source=/path/on/host/to/folder/custom_apps,target=/var/www/html/custom_apps \
--mount type=bind,source=/path/on/host/to/folder/config,target=/var/www/html/config \
--mount type=bind,source=/path/on/host/to/folder/data,target=/var/www/html/data \
--mount type=bind,source=/path/on/host/to/folder/theme,target=/var/www/html/themes/<YOUR_CUSTOM_THEME> \
nextcloud

Custom volumes

https://github.com/nextcloud/docker#custom-volumes

Confirming that upgrade.exclude contains the files and folders that should persist during
installation and upgrades; or
Mounting storage volumes to locations outside of /var/www/html .

Data inside the main folder (/var/www/html) will be overridden/removed during
installation and upgrades, unless listed in upgrade.exclude. The additional volumes
officially supported are already in that list, but custom volumes will need to be added by you. We
suggest mounting custom storage volumes outside of /var/www/html and if possible read-only so
that making this adjustment is unnecessary. If you must do so, however, you may build a custom
image with a modified /upgrade.exclude file that incorporates your custom volume(s).

The default user within a container is root (uid = 0). By default, processes inside the container will
expect to have root privileges. Network services will drop privileges and use www-data to serve
requests.

Depending on your volumes configuration, this can lead to permission issues. You can address this
by running the container with a different default user. When changing the default user, the image
will no longer assume it has root privileges and will run all processes under the specified uid. To
accomplish this, use the --user / user option in your container environment.

See:

https://docs.docker.com/engine/containers/run/#user
https://github.com/docker-library/docs/tree/master/php#running-as-an-arbitrary-user
https://docs.podman.io/en/stable/markdown/podman-run.1.html#user-u-user-group

To use the Nextcloud command-line interface (aka. occ command):

or for docker compose:

or even shorter:

Running as an arbitrary user / file permissions / changing
the default container user

Accessing the Nextcloud command-line interface (occ)

$ docker exec -it --user www-data CONTAINER_ID php occ

$ docker compose exec --user www-data app php occ

$ docker compose exec -u33 app ./occ

https://github.com/nextcloud/docker/blob/master/upgrade.exclude
https://github.com/nextcloud/docker/blob/master/upgrade.exclude
https://github.com/nextcloud/docker#running-as-an-arbitrary-user--file-permissions--changing-the-default-container-user
https://docs.docker.com/engine/containers/run/#user
https://github.com/docker-library/docs/tree/master/php#running-as-an-arbitrary-user
https://docs.podman.io/en/stable/markdown/podman-run.1.html#user-u-user-group
https://github.com/nextcloud/docker#accessing-the-nextcloud-command-line-interface-occ
https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/occ_command.html

Note: substitute 82 for 33 if using the Alpine-based images.

The image takes advantage of Nextcloud's Multiple config.php support to inject auto configuration
environment variables and set image specific config values.

This means that merely viewing your config.php will not give you an accurate view of your running
config. Instead, you should use Nextcloud's occ config:list system command to get get a complete
view of your merged configuration. This has the added benefit of automatically omitting sensitive
values such as passwords and secrets from the output by default (e.g. useful for shared publicly or
assisting others when troubleshooting or reporting a bug).

The --private flag can also be specified, in order to output all configuration values including
passwords and secrets.

The Nextcloud image supports auto configuration of the Nextcloud Server installation via
environment variables. You can preconfigure everything that would otherwise be prompted for by
the Nextcloud Installation Wizard (as well as a few other key parameters relevant to initial
installation).

To enable auto configuration, define your database connection via the following environment
variables. If you set any group of values (i.e. all of MYSQL_DATABASE , MYSQL_USER , MYSQL_PASSWORD
, MYSQL_HOST), they will not be requested via the Installation Wizard on first run.

You must specify all of the environment variables for a given database or the database
environment variables defaults to SQLITE. ONLY use one database type!

SQLite:

SQLITE_DATABASE Name of the database using sqlite

MYSQL/MariaDB:

MYSQL_DATABASE Name of the database using mysql / mariadb.
MYSQL_USER Username for the database using mysql / mariadb.
MYSQL_PASSWORD Password for the database user using mysql / mariadb.
MYSQL_HOST Hostname of the database server using mysql / mariadb.

Viewing the Nextcloud configuration (config.php)

$ docker compose exec -u33 app ./occ config:list system

Auto configuration via environment variables

Database parameters

https://github.com/nextcloud/docker#viewing-the-nextcloud-configuration-configphp
https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/config_sample_php_parameters.html#multiple-config-php-file
https://docs.nextcloud.com/server/latest/admin_manual/occ_command.html#config-commands-label
https://github.com/nextcloud/docker#auto-configuration-via-environment-variables
https://github.com/nextcloud/docker#database-parameters

PostgreSQL:

POSTGRES_DB Name of the database using postgres.
POSTGRES_USER Username for the database using postgres.
POSTGRES_PASSWORD Password for the database user using postgres.
POSTGRES_HOST Hostname of the database server using postgres.

As an alternative to passing sensitive information via environment variables, _FILE may be
appended to the previously listed environment variables, causing the initialization script to load the
values for those variables from files present in the container. See Docker secrets section below for
details.

If you specify all the variables for your database type (above), you can also auto configure your
initial admin user and password (only works if you set both):

NEXTCLOUD_ADMIN_USER Name of the Nextcloud admin user.
NEXTCLOUD_ADMIN_PASSWORD Password for the Nextcloud admin user.

Specifying a complete database and admin credential config set at initial deployment will result in
a fully automated installation (i.e. bypassing the web-based Nextcloud Installation Wizard).

Addition parameters may also be set at installation time and are described below.

If you don't want to use the default data directory (datadirectory) location, you can set a custom
one:

NEXTCLOUD_DATA_DIR (default: /var/www/html/data) Configures the data directory where
nextcloud stores all files from the users.

One or more trusted domains can be set through environment variable, too. They will be added to
the configuration after install.

NEXTCLOUD_TRUSTED_DOMAINS (not set by default) Optional space-separated list of domains

The install and update script is only triggered when a default command is used (apache-foreground
 or php-fpm). If you use a custom command you have to enable the install / update with

Initial admin account

Custom Data directory (datadirectory)

Trusted domains (trusted_domains)

Image specific

https://github.com/nextcloud/docker#docker-secrets
https://github.com/nextcloud/docker#initial-admin-account
https://github.com/nextcloud/docker#custom-data-directory-datadirectory
https://github.com/nextcloud/docker#trusted-domains-trusted_domains
https://github.com/nextcloud/docker#image-specific

NEXTCLOUD_UPDATE (default: 0)

You might want to make sure the htaccess is up to date after each container update. Especially on
multiple swarm nodes as any discrepancy will make your server unusable.

NEXTCLOUD_INIT_HTACCESS (not set by default) Set it to true to enable run occ
maintenance:update:htaccess after container initialization.

To use Redis for memory caching as well as PHP session storage, specify the following values and
also add a Redis container to your stack. See the examples for further instructions.

REDIS_HOST (not set by default) Name of Redis container
REDIS_HOST_PORT (default: 6379) Optional port for Redis, only use for external Redis
servers that run on non-standard ports.
REDIS_HOST_USER (not set by default) Optional username for Redis, only use for external
Redis servers that require a user.
REDIS_HOST_PASSWORD (not set by default) Redis password

Check the Nextcloud documentation for more information.

To use an external SMTP server, you have to provide the connection details. Note that if you
configure these values via Docker, you should not use the Nexcloud Web UI to configure external
SMTP server parameters. Conversely, if you prefer to use the Web UI, do not set these variables
here (because these variables will override whatever you attempt to set in the Web UI for these
parameters). To configure Nextcloud to use SMTP add:

SMTP_HOST (not set by default): The hostname of the SMTP server.
SMTP_SECURE (empty by default): Set to ssl to use SSL, or tls to use STARTTLS.
SMTP_PORT (default: 465 for SSL and 25 for non-secure connections): Optional port for
the SMTP connection. Use 587 for an alternative port for STARTTLS.
SMTP_AUTHTYPE (default: LOGIN): The method used for authentication. Use PLAIN if no
authentication is required.
SMTP_NAME (empty by default): The username for the authentication.
SMTP_PASSWORD (empty by default): The password for the authentication.
MAIL_FROM_ADDRESS (not set by default): Set the local-part for the 'from' field in the emails
sent by Nextcloud.
MAIL_DOMAIN (not set by default): Set a different domain for the emails than the domain
where Nextcloud is installed.

At a minimum, the SMTP_HOST , MAIL_FROM_ADDRESS and MAIL_DOMAIN parameters must be defined.

Redis Memory Caching

E-mail (SMTP) Configuration

https://github.com/nextcloud/docker#redis-memory-caching
https://hub.docker.com/_/redis/
https://github.com/nextcloud/docker/tree/master/.examples
https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/caching_configuration.html
https://github.com/nextcloud/docker#e-mail-smtp-configuration

Check the Nextcloud documentation for other values to configure SMTP.

By default, Nextcloud stores all files in /var/www/html/data/ (or whatever custom data directory
you've configured). Nextcloud also allows the use of object storages (like OpenStack Swift or any
Amazon S3-compatible implementation) as Primary Storage. This semi-replaces the default storage
of files in the data directory. Note: This data directory might still be used for compatibility reasons
and still needs to exist. Check the Nextcloud documentation for more information.

To use an external S3 compatible object store as primary storage, set the following variables:

OBJECTSTORE_S3_BUCKET : The name of the bucket that Nextcloud should store the data in
OBJECTSTORE_S3_REGION : The region that the S3 bucket resides in
OBJECTSTORE_S3_HOST : The hostname of the object storage server
OBJECTSTORE_S3_PORT : The port that the object storage server is being served over
OBJECTSTORE_S3_KEY : AWS style access key
OBJECTSTORE_S3_SECRET : AWS style secret access key
OBJECTSTORE_S3_STORAGE_CLASS : The storage class to use when adding objects to the
bucket
OBJECTSTORE_S3_SSL (default: true): Whether or not SSL/TLS should be used to
communicate with object storage server
OBJECTSTORE_S3_USEPATH_STYLE (default: false): Not required for AWS S3
OBJECTSTORE_S3_LEGACYAUTH (default: false): Not required for AWS S3
OBJECTSTORE_S3_OBJECT_PREFIX (default: urn:oid:): Prefix to prepend to the fileid
OBJECTSTORE_S3_AUTOCREATE (default: true): Create the container if it does not exist
OBJECTSTORE_S3_SSE_C_KEY (not set by default): Base64 encoded key with a maximum
length of 32 bytes for server side encryption (SSE-C)

Check the Nextcloud documentation for more information.

To use an external OpenStack Swift object store as primary storage, set the following variables:

OBJECTSTORE_SWIFT_URL : The Swift identity (Keystone) endpoint
OBJECTSTORE_SWIFT_AUTOCREATE (default: false): Whether or not Nextcloud should
automatically create the Swift container
OBJECTSTORE_SWIFT_USER_NAME : Swift username
OBJECTSTORE_SWIFT_USER_PASSWORD : Swift user password
OBJECTSTORE_SWIFT_USER_DOMAIN (default: Default): Swift user domain
OBJECTSTORE_SWIFT_PROJECT_NAME : OpenStack project name
OBJECTSTORE_SWIFT_PROJECT_DOMAIN (default: Default): OpenStack project domain
OBJECTSTORE_SWIFT_SERVICE_NAME (default: swift): Swift service name
OBJECTSTORE_SWIFT_REGION : Swift endpoint region
OBJECTSTORE_SWIFT_CONTAINER_NAME : Swift container (bucket) that Nextcloud should store
the data in

Object Storage (Primary Storage)

https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/email_configuration.html
https://github.com/nextcloud/docker#object-storage-primary-storage
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/primary_storage.html
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/primary_storage.html#simple-storage-service-s3

Check the Nextcloud documentation for more information.

To customize PHP limits you can change the following variables:

PHP_MEMORY_LIMIT (default 512M) This sets the maximum amount of memory in bytes that
a script is allowed to allocate. This is meant to help prevent poorly written scripts from
eating up all available memory but it can prevent normal operation if set too tight.
PHP_UPLOAD_LIMIT (default 512M) This sets the upload limit (post_max_size and
upload_max_filesize) for big files. Note that you may have to change other limits depending
on your client, webserver or operating system. Check the Nextcloud documentation for
more information.
PHP_OPCACHE_MEMORY_CONSUMPTION (default 128) This sets the opcache.memory_consumption
 value. It's the size of the shared memory storage used by OPcache, in megabytes.

To customize the Apache max file upload limit you can change the following variable:

APACHE_BODY_LIMIT (default 1073741824 [1GiB]) This restricts the total size of the HTTP
request body sent from the client. It specifies the number of bytes that are allowed in a
request body. A value of 0 means unlimited.

Check the Nextcloud documentation for more information.

By default, the apache image will replace the remote addr (IP address visible to Nextcloud) with the
IP address from X-Real-IP if the request is coming from a reverse proxy in 10.0.0.0/8 , 172.16.0.0/12
 or 192.168.0.0/16 . If you want Nextcloud to pick up the server host (HTTP_X_FORWARDED_HOST),
protocol (HTTP_X_FORWARDED_PROTO) and client IP (HTTP_X_FORWARDED_FOR) from a trusted proxy,
then disable rewrite IP and add the reverse proxy's IP address to TRUSTED_PROXIES .

APACHE_DISABLE_REWRITE_IP (not set by default): Set to 1 to disable rewrite IP.
TRUSTED_PROXIES (empty by default): A space-separated list of trusted proxies. CIDR
notation is supported for IPv4.

If the TRUSTED_PROXIES approach does not work for you, try using fixed values for overwrite
parameters.

OVERWRITEHOST (empty by default): Set the hostname of the proxy. Can also specify a
port.

PHP Configuration

Apache Configuration

Using the image behind a reverse proxy and specifying the
server host and protocol

https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/primary_storage.html#openstack-swift
https://github.com/nextcloud/docker#php-configuration
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/big_file_upload_configuration.html
https://github.com/nextcloud/docker#apache-configuration
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/big_file_upload_configuration.html#apache
https://github.com/nextcloud/docker#using-the-image-behind-a-reverse-proxy-and-specifying-the-server-host-and-protocol

OVERWRITEPROTOCOL (empty by default): Set the protocol of the proxy, http or https.
OVERWRITECLIURL (empty by default): Set the cli url of the proxy (e.g.
https://mydnsname.example.com)
OVERWRITEWEBROOT (empty by default): Set the absolute path of the proxy.
OVERWRITECONDADDR (empty by default): Regex to overwrite the values dependent on the
remote address.
FORWARDED_FOR_HEADERS (empty by default): HTTP headers with the original client IP
address

Check the Nexcloud documentation for more details.

Keep in mind that once set at install time, removing these environment variables later won't
remove them from your config/config.php , due to how Nextcloud generates and merges the initial
configuration at installation time. They can still, however, be removed manually from your
config/config.php .

The image comes with special config files for Nextcloud that set parameters specific to
containerized usage (e.g. upgrade-disable-web.config.php) or enable auto configuration via
environment variables (e.g. reverse-proxy.config.php). Not keeping these files up-to-date when this
warning appears may cause certain auto configuration environment variables to be ignored or the
image to not work as documented or expected.

During a fresh Nextcloud installation, the latest version (from the image) of these files are copied
into /var/www/html/config so that they are stored within your container's persistent storage and
picked up by Nextcloud alongside your local configuration.

The copied files, however, are not automatically overwritten whenever you update your
environment with a newer Nextcloud image. This is to prevent local changes in /var/www/html/config
 from being unexpectedly overwritten. This may lead to your image-specific configuration files
becoming outdated and image functionality not matching that which is documented.

Within each image, the latest version of these config files are located in /usr/src/nextcloud/config .

A warning will be generated in the container log output when outdated image-specific configuration
files are detected at startup in a running container. When you see this warning, you should
manually compare (or copy) the files from /usr/src/nextcloud/config to /var/www/html/config . A
command to copy these configs would e.g. be:

Handling Warning: /var/www/html/config/$cfgFile differs from the latest version of
this image at /usr/src/nextcloud/config/$cfgFile (aka: Auto configuration and
Nextcloud updates)

docker exec <container-name> sh -c "cp /usr/src/nextcloud/config/*.php /var/www/html/config"

https://mydnsname.example.com/
https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/reverse_proxy_configuration.html
https://github.com/nextcloud/docker#handling-warning-varwwwhtmlconfigcfgfile-differs-from-the-latest-version-of-this-image-at-usrsrcnextcloudconfigcfgfile-aka-auto-configuration-and-nextcloud-updates

As long as you have not modified any of the provided config files in /var/www/html/config (other than
config.php) or only added new ones with names that do not conflict with the image specific ones,
copying the new ones into place should be safe (but check the source path /usr/src/nextcloud/config
 for any newly named config files to avoid new overlaps just in case).

There are 5 hooks

pre-installation Executed before the Nextcloud is installed/initiated
post-installation Executed after the Nextcloud is installed/initiated
pre-upgrade Executed before the Nextcloud is upgraded
post-upgrade Executed after the Nextcloud is upgraded
before-starting Executed before the Nextcloud starts

To use the hooks triggered by the entrypoint script, either

Added your script(s) to the individual of the hook folder(s), which are located at the path
/docker-entrypoint-hooks.d in the container
Use volume(s) if you want to use script from the host system inside the container, see
example.

Note: Only the script(s) located in a hook folder (not sub-folders), ending with .sh and marked as
executable, will be executed.

Example: Mount using volumes

The easiest way to get a fully featured and functional setup is using a compose.yaml file. There are
too many different possibilities to setup your system, so here are only some examples of what you
have to look for.

Auto configuration via hook folders

...
 app:
 image: nextcloud:stable

 volumes:
 - ./app-hooks/pre-installation:/docker-entrypoint-hooks.d/pre-installation
 - ./app-hooks/post-installation:/docker-entrypoint-hooks.d/post-installation
 - ./app-hooks/pre-upgrade:/docker-entrypoint-hooks.d/pre-upgrade
 - ./app-hooks/post-upgrade:/docker-entrypoint-hooks.d/post-upgrade
 - ./app-hooks/before-starting:/docker-entrypoint-hooks.d/before-starting
...

Running this image with docker compose

https://github.com/nextcloud/docker#auto-configuration-via-hook-folders
https://github.com/nextcloud/docker#running-this-image-with-docker-compose

At first, make sure you have chosen the right base image (fpm or apache) and added features you
wanted (see below). In every case, you would want to add a database container and docker
volumes to get easy access to your persistent data. When you want to have your server reachable
from the internet, adding HTTPS-encryption is mandatory! See below for more information.

This version will use the apache variant and add a MariaDB container. The volumes are set to keep
your data persistent. This setup provides no TLS encryption and is intended to run behind a
proxy.

Make sure to pass in values for MYSQL_ROOT_PASSWORD and MYSQL_PASSWORD variables before you
run this setup.

Base version - apache

services:
 # Note: MariaDB is external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/mariadb
 db:
 # Note: Check the recommend version here: https://docs.nextcloud.com/server/latest/admin_manual/installation/system_requirements.html#server
 image: mariadb:lts
 restart: always
 command: --transaction-isolation=READ-COMMITTED
 volumes:
 - db:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud

 # Note: Redis is an external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/redis
 redis:
 image: redis:alpine
 restart: always

 app:
 image: nextcloud
 restart: always
 ports:
 - 8080:80
 depends_on:
 - redis
 - db
 volumes:
 - nextcloud:/var/www/html
 environment:
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_HOST=db

https://github.com/nextcloud/docker#base-version---apache

Then run docker compose up -d , now you can access Nextcloud at http://localhost:8080/ from your
host system.

When using the FPM image, you need another container that acts as web server on port 80 and
proxies the requests to the Nextcloud container. In this example a simple nginx container is
combined with the Nextcloud-fpm image and a MariaDB database container. The data is stored in
docker volumes. The nginx container also needs access to static files from your Nextcloud
installation. It gets access to all the volumes mounted to Nextcloud via the volumes option. The
configuration for nginx is stored in the configuration file nginx.conf , that is mounted into the
container. An example can be found in the examples section here.

This setup provides no TLS encryption and is intended to run behind a reverse proxy.

Make sure to pass in values for MYSQL_ROOT_PASSWORD and MYSQL_PASSWORD variables before you
run this setup.

volumes:
 nextcloud:
 db:

Base version - FPM

services:
 # Note: MariaDB is an external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/mariadb
 db:
 # Note: Check the recommend version here: https://docs.nextcloud.com/server/latest/admin_manual/installation/system_requirements.html#server
 image: mariadb:lts
 restart: always
 command: --transaction-isolation=READ-COMMITTED
 volumes:
 - db:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud

 # Note: Redis is an external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/redis
 redis:
 image: redis:alpine
 restart: always

 app:
 image: nextcloud:fpm
 restart: always
 depends_on:

http://localhost:8080/
https://github.com/nextcloud/docker#base-version---fpm
https://github.com/nextcloud/docker/tree/master/.examples

Then run docker compose up -d , now you can access Nextcloud at http://localhost:8080/ from your
host system.

As an alternative to passing sensitive information via environment variables, _FILE may be
appended to some the previously listed environment variables, causing the initialization script to
load the values for those variables from files present in the container. In particular, this can be
used to load passwords from Docker secrets stored in /run/secrets/<secret_name> files.

Currently, this is only supported for NEXTCLOUD_ADMIN_PASSWORD , NEXTCLOUD_ADMIN_USER ,
MYSQL_DATABASE , MYSQL_PASSWORD , MYSQL_USER , POSTGRES_DB , POSTGRES_PASSWORD ,
POSTGRES_USER , REDIS_HOST_PASSWORD , SMTP_PASSWORD , OBJECTSTORE_S3_KEY , and
OBJECTSTORE_S3_SECRET .

If you set any group of _FILE based values (i.e. all of MYSQL_DATABASE_FILE , MYSQL_USER_FILE ,
MYSQL_PASSWORD_FILE), their non- _FILE counterparts will be ignored (MYSQL_DATABASE , MYSQL_USER
, MYSQL_PASSWORD).

 - redis
 - db
 volumes:
 - nextcloud:/var/www/html
 environment:
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_HOST=db

 # Note: Nginx is an external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/nginx/
 web:
 image: nginx:alpine-slim
 restart: always
 ports:
 - 8080:80
 depends_on:
 - app
 volumes:
 # https://docs.nextcloud.com/server/latest/admin_manual/installation/nginx.html
 - ./nginx.conf:/etc/nginx/nginx.conf:ro
 volumes_from:
 - app

volumes:
 nextcloud:
 db:

Docker Secrets

http://localhost:8080/
https://github.com/nextcloud/docker#docker-secrets

Any files containing secrets must be readable by the UID the container is running Nextcloud as
(i.e. www-data / 33).

Example:

services:
 # Note: PostgreSQL is external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/postgres
 db:
 # Note: Check the recommend version here: https://docs.nextcloud.com/server/latest/admin_manual/installation/system_requirements.html#server
 image: postgres:alpine
 restart: always
 volumes:
 - db:/var/lib/postgresql/data
 environment:
 - POSTGRES_DB_FILE=/run/secrets/postgres_db
 - POSTGRES_USER_FILE=/run/secrets/postgres_user
 - POSTGRES_PASSWORD_FILE=/run/secrets/postgres_password
 secrets:
 - postgres_db
 - postgres_password
 - postgres_user
 # Note: Redis is an external service. You can find more information about the configuration here:
 # https://hub.docker.com/_/redis
 redis:
 image: redis:alpine
 restart: always

 app:
 image: nextcloud
 restart: always
 ports:
 - 8080:80
 volumes:
 - nextcloud:/var/www/html
 environment:
 - POSTGRES_HOST=db
 - POSTGRES_DB_FILE=/run/secrets/postgres_db
 - POSTGRES_USER_FILE=/run/secrets/postgres_user
 - POSTGRES_PASSWORD_FILE=/run/secrets/postgres_password
 - NEXTCLOUD_ADMIN_PASSWORD_FILE=/run/secrets/nextcloud_admin_password
 - NEXTCLOUD_ADMIN_USER_FILE=/run/secrets/nextcloud_admin_user
 depends_on:
 - redis
 - db
 secrets:
 - nextcloud_admin_password
 - nextcloud_admin_user
 - postgres_db
 - postgres_password
 - postgres_user

volumes:

Until here, your Nextcloud is just available from your docker host. If you want your Nextcloud
available from the internet adding SSL encryption is mandatory.

There are many different possibilities to introduce encryption depending on your setup.

We recommend using a reverse proxy in front of your Nextcloud installation. Your Nextcloud will
only be reachable through the proxy, which encrypts all traffic to the clients. You can mount your
manually generated certificates to the proxy or use a fully automated solution which generates and
renews the certificates for you.

In our examples section we have an example for a fully automated setup using a reverse proxy, a
container for Let's Encrypt certificate handling, database and Nextcloud. It uses the popular nginx-
proxy and acme-companion containers. Please check the according documentations before using
this setup.

When you first access your Nextcloud, the setup wizard will appear and ask you to choose an
administrator account username, password and the database connection (unless of course you've
provided all the necessary auto-config config values ahead of time).

For the database use db as host and nextcloud as table and user name. Also enter the password
you chose in your compose.yaml file.

 db:
 nextcloud:

secrets:
 nextcloud_admin_password:
 file: ./nextcloud_admin_password.txt # put admin password in this file
 nextcloud_admin_user:
 file: ./nextcloud_admin_user.txt # put admin username in this file
 postgres_db:
 file: ./postgres_db.txt # put postgresql db name in this file
 postgres_password:
 file: ./postgres_password.txt # put postgresql password in this file
 postgres_user:
 file: ./postgres_user.txt # put postgresql username in this file

Make your Nextcloud available from the internet

HTTPS - SSL encryption

First use

Update to a newer version

https://github.com/nextcloud/docker#make-your-nextcloud-available-from-the-internet
https://github.com/nextcloud/docker#https---ssl-encryption
https://github.com/nextcloud/docker/tree/master/.examples
https://letsencrypt.org/
https://github.com/nginx-proxy/nginx-proxy
https://github.com/nginx-proxy/nginx-proxy
https://github.com/nginx-proxy/acme-companion
https://github.com/nextcloud/docker#first-use
https://github.com/nextcloud/docker#update-to-a-newer-version

Updating the Nextcloud container is done by pulling the new image, throwing away the old
container and starting the new one.

It is only possible to upgrade one major version at a time. For example, if you want to
upgrade from version 14 to 16, you will have to upgrade from version 14 to 15, then
from 15 to 16.

Since all data is stored in volumes, nothing gets lost. The startup script will check for the version in
your volume and the installed docker version. If it finds a mismatch, it automatically starts the
upgrade process. Don't forget to add all the volumes to your new container, so it works as
expected.

Beware that you have to run the same command with the options that you used to initially start
your Nextcloud. That includes volumes, port mapping.

When using docker compose your compose file takes care of your configuration, so you just have to
run:

A lot of people want to use additional functionality inside their Nextcloud installation. If the image
does not include the packages you need, you can easily build your own image on top of it. Start
your derived image with the FROM statement and add whatever you like.

The examples folder gives a few examples on how to add certain functionalities, like including the
cron job, smb-support or imap-authentication.

If you use your own Dockerfile, you need to configure your docker compose file accordingly. Switch
out the image option with build . You have to specify the path to your Dockerfile. (in the example
it's in the same directory next to the compose.yaml file)

$ docker pull nextcloud
$ docker stop <your_nextcloud_container>
$ docker rm <your_nextcloud_container>
$ docker run <OPTIONS> -d nextcloud

$ docker compose pull
$ docker compose up -d

Adding Features

FROM nextcloud:apache

RUN ...

 app:
 build: .
 restart: always

https://github.com/nextcloud/docker#adding-features
https://github.com/nextcloud/docker/blob/master/.examples

If you intend to use another command to run the image, make sure that you set
NEXTCLOUD_UPDATE=1 in your Dockerfile. Otherwise the installation and update will not work.

Updating your own derived image is also very simple. When a new version of the Nextcloud image
is available run:

or for docker compose:

The --pull option tells docker to look for new versions of the base image. Then the build instructions
inside your Dockerfile are run on top of the new image.

You're already using Nextcloud and want to switch to docker? Great! Here are some things to look
out for:

1. Define your whole Nextcloud infrastructure in a compose.yaml file and run it with docker
compose up -d to get the base installation, volumes and database. Work from there.

2. Restore your database from a mysqldump (db is the name of your database container /
service name)

To import from a MySQL dump use the following commands

To import from a PostgreSQL dump use to following commands

docker compose cp ./database.dmp db:/dmp
docker compose exec db sh -c "mysql --user USER --password PASSWORD nextcloud < /dmp"
docker compose exec db rm /dmp

 depends_on:
 - db
 volumes:
 - data:/var/www/html/data
 - config:/var/www/html/config
 - apps:/var/www/html/apps

FROM nextcloud:apache

...

ENV NEXTCLOUD_UPDATE=1

CMD ["/usr/bin/supervisord"]

docker build -t your-name --pull .
docker run -d your-name

docker compose build --pull
docker compose up -d

Migrating an existing installation

https://github.com/nextcloud/docker#migrating-an-existing-installation

docker compose cp ./database.dmp db:/dmp
docker compose exec db sh -c "psql -U USER --set ON_ERROR_STOP=on nextcloud < /dmp"
docker compose exec db rm /dmp

3. Edit your config.php
1. Set database connection

In case of MySQL database

In case of PostgreSQL database

'dbhost' => 'db:3306',

'dbhost' => 'db:5432',

2. Make sure you have no configuration for the apps_paths . Delete lines like these
'apps_paths' => array (
 0 => array (
 'path' => OC::$SERVERROOT.'/apps',
 'url' => '/apps',
 'writable' => true,
),
),

3. Make sure to have the apps directory non writable and the custom_apps directory
writable

'apps_paths' => array (
 0 => array (
 'path' => '/var/www/html/apps',
 'url' => '/apps',
 'writable' => false,
),
 1 => array (
 'path' => '/var/www/html/custom_apps',
 'url' => '/custom_apps',
 'writable' => true,
),
),

4. Make sure your data directory is set to /var/www/html/data
'datadirectory' => '/var/www/html/data',

4. Copy your data (app is the name of your Nextcloud container / service name):

If you want to preserve the metadata of your files like timestamps, copy the data directly

docker compose cp ./data/ app:/var/www/html/
docker compose exec app chown -R www-data:www-data /var/www/html/data
docker compose cp ./theming/ app:/var/www/html/
docker compose exec app chown -R www-data:www-data /var/www/html/theming
docker compose cp ./config/config.php app:/var/www/html/config
docker compose exec app chown -R www-data:www-data /var/www/html/config

on the host to the named volume using plain cp like this:
cp --preserve --recursive ./data/ /path/to/nextcloudVolume/data

5. Copy only the custom apps you use (or simply redownload them from the web interface):
docker compose cp ./custom_apps/ app:/var/www/html/
docker compose exec app chown -R www-data:www-data /var/www/html/custom_apps

If you already use one of our non-Alpine images, but want to switch to an Alpine-based image, you
may experience permissions problems with your existing volumes. This is because the Alpine
images uses a different user ID for www-data . So, you must change the ownership of the
/var/www/html (or $NEXTCLOUD_DATA_DIR) folder to be compatible with Alpine:

After changing the permissions, restart the container and the permission errors should disappear.

If you believe you've found a bug in the image itself (or have an enhancement idea specific to the
image), please search for already reported bugs and enhancement ideas.

If there is a relevant existing open issue, you can either add to the discussion there or upvote it to
indicate you're impacted by (or interested in) the same issue.

If you believe you've found a new bug, please create a new Issue so that others can try to
reproduce it and remediation can be tracked.

GitHub Issues or Pull Requests GitHub Issues or Pull Requests by label
GitHub Issues or Pull Requests by label GitHub Issues or Pull Requests by label

If you have any problems or usage questions while using the image, please ask for
assistance on the Nextcloud Community Help Forum rather than reporting them as "bugs"
(unless they really are bugs of course). This helps the maintainers (who are volunteers) remain
focused on making the image better (rather than responding solely to one-on-one support issues).
(Tip: Some of the maintainers are also regular responders to help requests on the Nextcloud
Community Help Forum.)

Discourse Users Discourse Posts

Most Nextcloud Server matters are covered in the official Nextcloud Admin Manual or the other
official Nextcloud documentation (which are routinely updated).

Migrating from a non-Alpine image to an Alpine image

docker exec container-name chown -R www-data:root /var/www/html

Reporting bugs or suggesting enhancements

https://github.com/nextcloud/docker#migrating-from-a-non-alpine-image-to-an-alpine-image
https://github.com/nextcloud/docker#reporting-bugs-or-suggesting-enhancements
https://github.com/nextcloud/docker/issues
https://camo.githubusercontent.com/d743db0f91e1a66b9b9f85a77424d6f83077c5a94c05a37a7c14293fad5ee340/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6e657874636c6f75642f646f636b65723f6c6162656c3d4f70656e253230497373756573
https://camo.githubusercontent.com/499277d8389844c68b2e83cc4931b7d948a1b065eae8019035f20a9e4d2a366d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6e657874636c6f75642f646f636b65722f6275673f7374796c653d666c6174266c6162656c3d4275672532305265706f72747326636f6c6f723d726564
https://camo.githubusercontent.com/46be2eae44219d2c0e90c7fe92e613f2f4d1fe74940c428186aa11e6e2fc86f9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6e657874636c6f75642f646f636b65722f656e68616e63656d656e743f7374796c653d666c6174266c6162656c3d456e68616e63656d656e74253230496465617326636f6c6f723d677265656e
https://camo.githubusercontent.com/1ce589f23b6317e651c89fe3b24f88a89e391f572d38042c167568d85b3b1844/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6e657874636c6f75642f646f636b65722f676f6f64253230666972737425323069737375653f7374796c653d666c6174266c6162656c3d476f6f642532304669727374253230497373756573
https://help.nextcloud.com/
https://help.nextcloud.com/
https://help.nextcloud.com/
https://help.nextcloud.com/
https://help.nextcloud.com/
https://docs.nextcloud.com/server/latest/admin_manual/
https://docs.nextcloud.com/
https://docs.nextcloud.com/

