
Link: https://github.com/nextcloud/docker git clone https://github.com/nextcloud/docker.git

Versão 29 extraída em Maio/2024.

GitHub CI build status badge update.sh build status badge amd64 build status badge
arm32v5 build status badge arm32v6 build status badge arm32v7 build status badge
arm64v8 build status badge i386 build status badge mips64le build status badge
ppc64le build status badge s390x build status badge

A safe home for all your data. Access & share your files, calendars, contacts, mail & more from any
device, on your terms.

logo

⚠️⚠️⚠️ This image is maintained by community volunteers and designed for expert use. For quick
and easy deployment that supports the full set of Nextcloud Hub features, use the Nextcloud All-in-
One docker container maintained by Nextcloud GmbH.

This image is designed to be used in a micro-service environment. There are two versions of the
image you can choose from.

The apache tag contains a full Nextcloud installation including an apache web server. It is designed
to be easy to use and gets you running pretty fast. This is also the default for the latest tag and
version tags that are not further specified.

Nextcloud repositório oficial
- comunidade

What is Nextcloud?

How to use this image

https://github.com/nextcloud/docker
https://github.com/nextcloud/docker.git
https://github.com/nextcloud/docker#what-is-nextcloud
https://github.com/nextcloud/docker/actions?query=workflow%3AImages
https://github.com/nextcloud/docker/actions?query=workflow%3Aupdate.sh
https://doi-janky.infosiftr.net/job/multiarch/job/amd64/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/arm32v5/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/arm32v6/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/arm32v7/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/arm64v8/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/i386/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/mips64le/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/ppc64le/job/nextcloud
https://doi-janky.infosiftr.net/job/multiarch/job/s390x/job/nextcloud
https://camo.githubusercontent.com/2d4c65b31209dcabb927294bb5b72296ea0e7c496346fca5230cea786e5459e1/68747470733a2f2f63646e2e7261776769742e636f6d2f6e657874636c6f75642f646f636b65722f303731623838386637663638396361613632633134393862366336316362333539396263656132622f6c6f676f2e737667
https://github.com/nextcloud/all-in-one#nextcloud-all-in-one
https://github.com/nextcloud/all-in-one#nextcloud-all-in-one
https://github.com/nextcloud/docker#how-to-use-this-image

The second option is a fpm container. It is based on the php-fpm image and runs a fastCGI-Process
that serves your Nextcloud page. To use this image it must be combined with any webserver that
can proxy the http requests to the FastCGI-port of the container.

Try in PWD

The apache image contains a webserver and exposes port 80. To start the container type:

Now you can access Nextcloud at http://localhost:8080/ from your host system.

To use the fpm image, you need an additional web server, such as nginx, that can proxy http-
request to the fpm-port of the container. For fpm connection this container exposes port 9000. In
most cases, you might want to use another container or your host as proxy. If you use your host
you can address your Nextcloud container directly on port 9000. If you use another container,
make sure that you add them to the same docker network (via docker run --network <NAME> ... or a
docker-compose file). In both cases you don't want to map the fpm port to your host.

As the fastCGI-Process is not capable of serving static files (style sheets, images, ...), the webserver
needs access to these files. This can be achieved with the volumes-from option. You can find more
information in the docker-compose section.

By default, this container uses SQLite for data storage but the Nextcloud setup wizard (appears on
first run) allows connecting to an existing MySQL/MariaDB or PostgreSQL database. You can also
link a database container, e. g. --link my-mysql:mysql , and then use mysql as the database host on
setup. More info is in the docker-compose section.

Using the apache image

$ docker run -d -p 8080:80 nextcloud

Using the fpm image

$ docker run -d nextcloud:fpm

Using an external database

https://hub.docker.com/_/php/
http://play-with-docker.com/?stack=https://raw.githubusercontent.com/nextcloud/docker/8db861d67f257a3e9ac1790ea06d4e2a7a193a6c/stack.yml
https://github.com/nextcloud/docker#using-the-apache-image
http://localhost:8080/
https://github.com/nextcloud/docker#using-the-fpm-image
https://docs.nextcloud.com/server/latest/admin_manual/installation/nginx.html
https://github.com/nextcloud/docker#running-this-image-with-docker-compose
https://github.com/nextcloud/docker#using-an-external-database

The Nextcloud installation and all data beyond what lives in the database (file uploads, etc.) are
stored in the unnamed docker volume volume /var/www/html . The docker daemon will store that
data within the docker directory /var/lib/docker/volumes/... . That means your data is saved even if the
container crashes, is stopped or deleted.

A named Docker volume or a mounted host directory should be used for upgrades and backups. To
achieve this, you need one volume for your database container and one for Nextcloud.

Nextcloud:

/var/www/html/ folder where all Nextcloud data lives

Database:

/var/lib/mysql MySQL / MariaDB Data
/var/lib/postgresql/data PostgreSQL Data

If you want to get fine grained access to your individual files, you can mount additional volumes for
data, config, your theme and custom apps. The data , config files are stored in respective
subfolders inside /var/www/html/ . The apps are split into core apps (which are shipped with
Nextcloud and you don't need to take care of) and a custom_apps folder. If you use a custom theme
it would go into the themes subfolder.

Overview of the folders that can be mounted as volumes:

/var/www/html Main folder, needed for updating
/var/www/html/custom_apps installed / modified apps
/var/www/html/config local configuration
/var/www/html/data the actual data of your Nextcloud
/var/www/html/themes/<YOUR_CUSTOM_THEME> theming/branding

Persistent data

$ docker run -d \
-v nextcloud:/var/www/html \
nextcloud

$ docker run -d \
-v db:/var/lib/mysql \
mariadb:10.6

Additional volumes

https://github.com/nextcloud/docker#persistent-data
https://docs.docker.com/engine/tutorials/dockervolumes/#adding-a-data-volume
https://github.com/nextcloud/docker#additional-volumes

If you want to use named volumes for all of these, it would look like this:

If mounting additional volumes under /var/www/html , you should consider:

Confirming that upgrade.exclude contains the files and folders that should persist during
installation and upgrades; or
Mounting storage volumes to locations outside of /var/www/html .

Warning

You should note that data inside the main folder (/var/www/html) will be overridden/removed during
installation and upgrades, unless listed in upgrade.exclude. The additional volumes officially
supported are already in that list, but custom volumes will need to be added by you. We suggest
mounting custom storage volumes outside of /var/www/html and if possible read-only so that
making this adjustment is unnecessary. If you must do so, however, you may build a custom image
with a modified /upgrade.exclude file that incorporates your custom volume(s).

To use the Nextcloud command-line interface (aka. occ command):

or for docker-compose:

$ docker run -d \
-v nextcloud:/var/www/html \
-v apps:/var/www/html/custom_apps \
-v config:/var/www/html/config \
-v data:/var/www/html/data \
-v theme:/var/www/html/themes/<YOUR_CUSTOM_THEME> \
nextcloud

Custom volumes

Using the Nextcloud command-line
interface

$ docker exec --user www-data CONTAINER_ID php occ

$ docker-compose exec --user www-data app php occ

https://github.com/nextcloud/docker#custom-volumes
https://github.com/nextcloud/docker/blob/master/upgrade.exclude
https://github.com/nextcloud/docker/blob/master/upgrade.exclude
https://github.com/nextcloud/docker#using-the-nextcloud-command-line-interface
https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/occ_command.html

The Nextcloud image supports auto configuration via environment variables. You can preconfigure
everything that is asked on the install page on first run. To enable auto configuration, set your
database connection via the following environment variables. You must specify all of the
environment variables for a given database or the database environment variables defaults to
SQLITE. ONLY use one database type!

SQLite:

SQLITE_DATABASE Name of the database using sqlite

MYSQL/MariaDB:

MYSQL_DATABASE Name of the database using mysql / mariadb.
MYSQL_USER Username for the database using mysql / mariadb.
MYSQL_PASSWORD Password for the database user using mysql / mariadb.
MYSQL_HOST Hostname of the database server using mysql / mariadb.

PostgreSQL:

POSTGRES_DB Name of the database using postgres.
POSTGRES_USER Username for the database using postgres.
POSTGRES_PASSWORD Password for the database user using postgres.
POSTGRES_HOST Hostname of the database server using postgres.

As an alternative to passing sensitive information via environment variables, _FILE may be
appended to the previously listed environment variables, causing the initialization script to load the
values for those variables from files present in the container. See Docker secrets section below.

If you set any group of values (i.e. all of MYSQL_DATABASE , MYSQL_USER , MYSQL_PASSWORD ,
MYSQL_HOST), they will not be asked in the install page on first run. With a complete configuration
by using all variables for your database type, you can additionally configure your Nextcloud
instance by setting admin user and password (only works if you set both):

NEXTCLOUD_ADMIN_USER Name of the Nextcloud admin user.
NEXTCLOUD_ADMIN_PASSWORD Password for the Nextcloud admin user.

If you want, you can set the data directory, otherwise default value will be used.

NEXTCLOUD_DATA_DIR (default: /var/www/html/data) Configures the data directory where
nextcloud stores all files from the users.

Auto configuration via
environment variables

https://github.com/nextcloud/docker#auto-configuration-via-environment-variables
https://github.com/nextcloud/docker#docker-secrets

One or more trusted domains can be set through environment variable, too. They will be added to
the configuration after install.

NEXTCLOUD_TRUSTED_DOMAINS (not set by default) Optional space-separated list of domains

The install and update script is only triggered when a default command is used (apache-foreground
 or php-fpm). If you use a custom command you have to enable the install / update with

NEXTCLOUD_UPDATE (default: 0)

You might want to make sure the htaccess is up to date after each container update. Especially on
multiple swarm nodes as any discrepancy will make your server unusable.

NEXTCLOUD_INIT_HTACCESS (not set by default) Set it to true to enable run occ
maintenance:update:htaccess after container initialization.

If you want to use Redis you have to create a separate Redis container in your setup / in your
docker-compose file. To inform Nextcloud about the Redis container, pass in the following
parameters:

REDIS_HOST (not set by default) Name of Redis container
REDIS_HOST_PORT (default: 6379) Optional port for Redis, only use for external Redis
servers that run on non-standard ports.
REDIS_HOST_PASSWORD (not set by default) Redis password

The use of Redis is recommended to prevent file locking problems. See the examples for further
instructions.

To use an external SMTP server, you have to provide the connection details. To configure
Nextcloud to use SMTP add:

SMTP_HOST (not set by default): The hostname of the SMTP server.
SMTP_SECURE (empty by default): Set to ssl to use SSL, or tls to use STARTTLS.
SMTP_PORT (default: 465 for SSL and 25 for non-secure connections): Optional port for
the SMTP connection. Use 587 for an alternative port for STARTTLS.
SMTP_AUTHTYPE (default: LOGIN): The method used for authentication. Use PLAIN if no
authentication is required.
SMTP_NAME (empty by default): The username for the authentication.
SMTP_PASSWORD (empty by default): The password for the authentication.
MAIL_FROM_ADDRESS (not set by default): Set the local-part for the 'from' field in the emails
sent by Nextcloud.
MAIL_DOMAIN (not set by default): Set a different domain for the emails than the domain
where Nextcloud is installed.

At least SMTP_HOST , MAIL_FROM_ADDRESS and MAIL_DOMAIN must be set for the configurations to be
applied.

https://hub.docker.com/_/redis/

Check the Nextcloud documentation for other values to configure SMTP.

To use an external S3 compatible object store as primary storage, set the following variables:

OBJECTSTORE_S3_BUCKET : The name of the bucket that Nextcloud should store the data in
OBJECTSTORE_S3_REGION : The region that the S3 bucket resides in
OBJECTSTORE_S3_HOST : The hostname of the object storage server
OBJECTSTORE_S3_PORT : The port that the object storage server is being served over
OBJECTSTORE_S3_KEY : AWS style access key
OBJECTSTORE_S3_SECRET : AWS style secret access key
OBJECTSTORE_S3_STORAGE_CLASS : The storage class to use when adding objects to the
bucket
OBJECTSTORE_S3_SSL (default: true): Whether or not SSL/TLS should be used to
communicate with object storage server
OBJECTSTORE_S3_USEPATH_STYLE (default: false): Not required for AWS S3
OBJECTSTORE_S3_LEGACYAUTH (default: false): Not required for AWS S3
OBJECTSTORE_S3_OBJECT_PREFIX (default: urn:oid:): Prefix to prepend to the fileid
OBJECTSTORE_S3_AUTOCREATE (default: true): Create the container if it does not exist
OBJECTSTORE_S3_SSE_C_KEY (not set by default): Base64 encoded key with a maximum
length of 32 bytes for server side encryption (SSE-C)

Check the Nextcloud documentation for more information.

To use an external OpenStack Swift object store as primary storage, set the following variables:

OBJECTSTORE_SWIFT_URL : The Swift identity (Keystone) endpoint
OBJECTSTORE_SWIFT_AUTOCREATE (default: false): Whether or not Nextcloud should
automatically create the Swift container
OBJECTSTORE_SWIFT_USER_NAME : Swift username
OBJECTSTORE_SWIFT_USER_PASSWORD : Swift user password
OBJECTSTORE_SWIFT_USER_DOMAIN (default: Default): Swift user domain
OBJECTSTORE_SWIFT_PROJECT_NAME : OpenStack project name
OBJECTSTORE_SWIFT_PROJECT_DOMAIN (default: Default): OpenStack project domain
OBJECTSTORE_SWIFT_SERVICE_NAME (default: swift): Swift service name
OBJECTSTORE_SWIFT_REGION : Swift endpoint region
OBJECTSTORE_SWIFT_CONTAINER_NAME : Swift container (bucket) that Nextcloud should store
the data in

Check the Nextcloud documentation for more information.

To customize other PHP limits you can simply change the following variables:

PHP_MEMORY_LIMIT (default 512M) This sets the maximum amount of memory in bytes that
a script is allowed to allocate. This is meant to help prevent poorly written scripts from
eating up all available memory but it can prevent normal operation if set too tight.

https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/email_configuration.html
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/primary_storage.html#simple-storage-service-s3
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/primary_storage.html#openstack-swift

PHP_UPLOAD_LIMIT (default 512M) This sets the upload limit (post_max_size and
upload_max_filesize) for big files. Note that you may have to change other limits depending
on your client, webserver or operating system. Check the Nextcloud documentation for
more information.

To customize Apache max file upload limit you can change the following variable:

APACHE_BODY_LIMIT (default 1073741824 [1GiB]) This restricts the total size of the HTTP
request body sent from the client. It specifies the number of bytes that are allowed in a
request body. A value of 0 means unlimited. Check the Nextcloud documentation for
more information.

There are 5 hooks

pre-installation Executed before the Nextcloud is installed/initiated
post-installation Executed after the Nextcloud is installed/initiated
pre-upgrade Executed before the Nextcloud is upgraded
post-upgrade Executed after the Nextcloud is upgraded
before-starting Executed before the Nextcloud starts

To use the hooks triggered by the entrypoint script, either

Added your script(s) to the individual of the hook folder(s), which are located at the path
/docker-entrypoint-hooks.d in the container
Use volume(s) if you want to use script from the host system inside the container, see
example.

Note: Only the script(s) located in a hook folder (not sub-folders), ending with .sh and marked as
executable, will be executed.

Example: Mount using volumes

Auto configuration via hook folders

...
 app:
 image: nextcloud:stable

 volumes:
 - ./app-hooks/pre-installation:/docker-entrypoint-hooks.d/pre-installation
 - ./app-hooks/post-installation:/docker-entrypoint-hooks.d/post-installation
 - ./app-hooks/pre-upgrade:/docker-entrypoint-hooks.d/pre-upgrade
 - ./app-hooks/post-upgrade:/docker-entrypoint-hooks.d/post-upgrade
 - ./app-hooks/before-starting:/docker-entrypoint-hooks.d/before-starting
...

https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/big_file_upload_configuration.html
https://docs.nextcloud.com/server/latest/admin_manual/configuration_files/big_file_upload_configuration.html#apache
https://github.com/nextcloud/docker#auto-configuration-via-hook-folders

The apache image will replace the remote addr (IP address visible to Nextcloud) with the IP address
from X-Real-IP if the request is coming from a proxy in 10.0.0.0/8 , 172.16.0.0/12 or 192.168.0.0/16 by
default. If you want Nextcloud to pick up the server host (HTTP_X_FORWARDED_HOST), protocol (
HTTP_X_FORWARDED_PROTO) and client IP (HTTP_X_FORWARDED_FOR) from a trusted proxy, then
disable rewrite IP and add the reverse proxy's IP address to TRUSTED_PROXIES .

APACHE_DISABLE_REWRITE_IP (not set by default): Set to 1 to disable rewrite IP.
TRUSTED_PROXIES (empty by default): A space-separated list of trusted proxies. CIDR
notation is supported for IPv4.

If the TRUSTED_PROXIES approach does not work for you, try using fixed values for overwrite
parameters.

OVERWRITEHOST (empty by default): Set the hostname of the proxy. Can also specify a
port.
OVERWRITEPROTOCOL (empty by default): Set the protocol of the proxy, http or https.
OVERWRITECLIURL (empty by default): Set the cli url of the proxy (e.g.
https://mydnsname.example.com)
OVERWRITEWEBROOT (empty by default): Set the absolute path of the proxy.
OVERWRITECONDADDR (empty by default): Regex to overwrite the values dependent on the
remote address.

Check the Nexcloud documentation for more details.

Keep in mind that once set, removing these environment variables won't remove these values from
the configuration file, due to how Nextcloud merges configuration files together.

Using the apache image behind a
reverse proxy and auto configure
server host and protocol

Running this image with
docker-compose

https://github.com/nextcloud/docker#using-the-apache-image-behind-a-reverse-proxy-and-auto-configure-server-host-and-protocol
https://mydnsname.example.com/
https://docs.nextcloud.com/server/latest/admin_manual/configuration_server/reverse_proxy_configuration.html

The easiest way to get a fully featured and functional setup is using a docker-compose file. There are
too many different possibilities to setup your system, so here are only some examples of what you
have to look for.

At first, make sure you have chosen the right base image (fpm or apache) and added features you
wanted (see below). In every case, you would want to add a database container and docker
volumes to get easy access to your persistent data. When you want to have your server reachable
from the internet, adding HTTPS-encryption is mandatory! See below for more information.

This version will use the apache image and add a mariaDB container. The volumes are set to keep
your data persistent. This setup provides no ssl encryption and is intended to run behind a proxy.

Make sure to pass in values for MYSQL_ROOT_PASSWORD and MYSQL_PASSWORD variables before you
run this setup.

Base version - apache

version: '2'

volumes:
 nextcloud:
 db:

services:
 db:
 image: mariadb:10.6
 restart: always
 command: --transaction-isolation=READ-COMMITTED --log-bin=binlog --binlog-format=ROW
 volumes:
 - db:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud

 app:
 image: nextcloud
 restart: always
 ports:
 - 8080:80
 links:
 - db
 volumes:
 - nextcloud:/var/www/html
 environment:
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud

https://github.com/nextcloud/docker#running-this-image-with-docker-compose
https://github.com/nextcloud/docker#base-version---apache

Then run docker-compose up -d , now you can access Nextcloud at http://localhost:8080/ from your
host system.

When using the FPM image, you need another container that acts as web server on port 80 and
proxies the requests to the Nextcloud container. In this example a simple nginx container is
combined with the Nextcloud-fpm image and a MariaDB database container. The data is stored in
docker volumes. The nginx container also needs access to static files from your Nextcloud
installation. It gets access to all the volumes mounted to Nextcloud via the volumes_from option.
The configuration for nginx is stored in the configuration file nginx.conf , that is mounted into the
container. An example can be found in the examples section here.

As this setup does not include encryption, it should be run behind a proxy.

Make sure to pass in values for MYSQL_ROOT_PASSWORD and MYSQL_PASSWORD variables before you
run this setup.

 - MYSQL_USER=nextcloud
 - MYSQL_HOST=db

Base version - FPM

version: '2'

volumes:
 nextcloud:
 db:

services:
 db:
 image: mariadb:10.6
 restart: always
 command: --transaction-isolation=READ-COMMITTED --log-bin=binlog --binlog-format=ROW
 volumes:
 - db:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud

 app:
 image: nextcloud:fpm
 restart: always
 links:
 - db
 volumes:
 - nextcloud:/var/www/html

http://localhost:8080/
https://github.com/nextcloud/docker#base-version---fpm
https://github.com/nextcloud/docker/tree/master/.examples

Then run docker-compose up -d , now you can access Nextcloud at http://localhost:8080/ from your
host system.

As an alternative to passing sensitive information via environment variables, _FILE may be
appended to the previously listed environment variables, causing the initialization script to load the
values for those variables from files present in the container. In particular, this can be used to load
passwords from Docker secrets stored in /run/secrets/<secret_name> files. For example:

 environment:
 - MYSQL_PASSWORD=
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_HOST=db

 web:
 image: nginx
 restart: always
 ports:
 - 8080:80
 links:
 - app
 volumes:
 - ./nginx.conf:/etc/nginx/nginx.conf:ro
 volumes_from:
 - app

Docker Secrets

version: '3.2'

services:
 db:
 image: postgres
 restart: always
 volumes:
 - db:/var/lib/postgresql/data
 environment:
 - POSTGRES_DB_FILE=/run/secrets/postgres_db
 - POSTGRES_USER_FILE=/run/secrets/postgres_user
 - POSTGRES_PASSWORD_FILE=/run/secrets/postgres_password
 secrets:
 - postgres_db
 - postgres_password
 - postgres_user

 app:
 image: nextcloud
 restart: always

http://localhost:8080/
https://github.com/nextcloud/docker#docker-secrets

Currently, this is only supported for NEXTCLOUD_ADMIN_PASSWORD , NEXTCLOUD_ADMIN_USER ,
MYSQL_DATABASE , MYSQL_PASSWORD , MYSQL_USER , POSTGRES_DB , POSTGRES_PASSWORD ,
POSTGRES_USER , REDIS_HOST_PASSWORD , SMTP_PASSWORD , OBJECTSTORE_S3_KEY , and
OBJECTSTORE_S3_SECRET .

If you set any group of values (i.e. all of MYSQL_DATABASE_FILE , MYSQL_USER_FILE ,
MYSQL_PASSWORD_FILE , MYSQL_HOST), the script will not use the corresponding group of
environment variables (MYSQL_DATABASE , MYSQL_USER , MYSQL_PASSWORD , MYSQL_HOST).

 ports:
 - 8080:80
 volumes:
 - nextcloud:/var/www/html
 environment:
 - POSTGRES_HOST=db
 - POSTGRES_DB_FILE=/run/secrets/postgres_db
 - POSTGRES_USER_FILE=/run/secrets/postgres_user
 - POSTGRES_PASSWORD_FILE=/run/secrets/postgres_password
 - NEXTCLOUD_ADMIN_PASSWORD_FILE=/run/secrets/nextcloud_admin_password
 - NEXTCLOUD_ADMIN_USER_FILE=/run/secrets/nextcloud_admin_user
 depends_on:
 - db
 secrets:
 - nextcloud_admin_password
 - nextcloud_admin_user
 - postgres_db
 - postgres_password
 - postgres_user

volumes:
 db:
 nextcloud:

secrets:
 nextcloud_admin_password:
 file: ./nextcloud_admin_password.txt # put admin password in this file
 nextcloud_admin_user:
 file: ./nextcloud_admin_user.txt # put admin username in this file
 postgres_db:
 file: ./postgres_db.txt # put postgresql db name in this file
 postgres_password:
 file: ./postgres_password.txt # put postgresql password in this file
 postgres_user:
 file: ./postgres_user.txt # put postgresql username in this file

Until here, your Nextcloud is just available from your docker host. If you want your Nextcloud
available from the internet adding SSL encryption is mandatory.

There are many different possibilities to introduce encryption depending on your setup.

We recommend using a reverse proxy in front of your Nextcloud installation. Your Nextcloud will
only be reachable through the proxy, which encrypts all traffic to the clients. You can mount your
manually generated certificates to the proxy or use a fully automated solution which generates and
renews the certificates for you.

In our examples section we have an example for a fully automated setup using a reverse proxy, a
container for Let's Encrypt certificate handling, database and Nextcloud. It uses the popular nginx-
proxy and docker-letsencrypt-nginx-proxy-companion containers. Please check the according
documentations before using this setup.

When you first access your Nextcloud, the setup wizard will appear and ask you to choose an
administrator account username, password and the database connection. For the database use db
 as host and nextcloud as table and user name. Also enter the password you chose in your docker-
compose.yml file.

Updating the Nextcloud container is done by pulling the new image, throwing away the old
container and starting the new one.

Make your Nextcloud
available from the internet

HTTPS - SSL encryption

First use

Update to a newer version

https://github.com/nextcloud/docker#make-your-nextcloud-available-from-the-internet
https://github.com/nextcloud/docker#https---ssl-encryption
https://github.com/nextcloud/docker/tree/master/.examples
https://letsencrypt.org/
https://github.com/jwilder/nginx-proxy
https://github.com/jwilder/nginx-proxy
https://github.com/JrCs/docker-letsencrypt-nginx-proxy-companion
https://github.com/nextcloud/docker#first-use
https://github.com/nextcloud/docker#update-to-a-newer-version

It is only possible to upgrade one major version at a time. For example, if you want to
upgrade from version 14 to 16, you will have to upgrade from version 14 to 15, then
from 15 to 16.

Since all data is stored in volumes, nothing gets lost. The startup script will check for the version in
your volume and the installed docker version. If it finds a mismatch, it automatically starts the
upgrade process. Don't forget to add all the volumes to your new container, so it works as
expected.

Beware that you have to run the same command with the options that you used to initially start
your Nextcloud. That includes volumes, port mapping.

When using docker-compose your compose file takes care of your configuration, so you just have
to run:

A lot of people want to use additional functionality inside their Nextcloud installation. If the image
does not include the packages you need, you can easily build your own image on top of it. Start
your derived image with the FROM statement and add whatever you like.

The examples folder gives a few examples on how to add certain functionalities, like including the
cron job, smb-support or imap-authentication.

If you use your own Dockerfile, you need to configure your docker-compose file accordingly. Switch
out the image option with build . You have to specify the path to your Dockerfile. (in the example
it's in the same directory next to the docker-compose file)

$ docker pull nextcloud
$ docker stop <your_nextcloud_container>
$ docker rm <your_nextcloud_container>
$ docker run <OPTIONS> -d nextcloud

$ docker-compose pull
$ docker-compose up -d

Adding Features

FROM nextcloud:apache

RUN ...

 app:
 build: .
 restart: always

https://github.com/nextcloud/docker#adding-features
https://github.com/nextcloud/docker/blob/master/.examples

If you intend to use another command to run the image, make sure that you set
NEXTCLOUD_UPDATE=1 in your Dockerfile. Otherwise the installation and update will not work.

Updating your own derived image is also very simple. When a new version of the Nextcloud image
is available run:

or for docker-compose:

The --pull option tells docker to look for new versions of the base image. Then the build instructions
inside your Dockerfile are run on top of the new image.

You're already using Nextcloud and want to switch to docker? Great! Here are some things to look
out for:

1. Define your whole Nextcloud infrastructure in a docker-compose file and run it with docker-
compose up -d to get the base installation, volumes and database. Work from there.

2. Restore your database from a mysqldump (nextcloud_db_1 is the name of your db
container)

 links:
 - db
 volumes:
 - data:/var/www/html/data
 - config:/var/www/html/config
 - apps:/var/www/html/apps

FROM nextcloud:apache

...

ENV NEXTCLOUD_UPDATE=1

CMD ["/usr/bin/supervisord"]

docker build -t your-name --pull .
docker run -d your-name

docker-compose build --pull
docker-compose up -d

Migrating an existing
installation

https://github.com/nextcloud/docker#migrating-an-existing-installation

To import from a MySQL dump use the following commands

To import from a PostgreSQL dump use to following commands

docker cp ./database.dmp nextcloud_db_1:/dmp
docker-compose exec db sh -c "mysql --user USER --password PASSWORD nextcloud < /dmp"
docker-compose exec db rm /dmp

docker cp ./database.dmp nextcloud_db_1:/dmp
docker-compose exec db sh -c "psql -U USER --set ON_ERROR_STOP=on nextcloud < /dmp"
docker-compose exec db rm /dmp

3. Edit your config.php
1. Set database connection

In case of MySQL database

In case of PostgreSQL database

'dbhost' => 'db:3306',

'dbhost' => 'db:5432',

2. Make sure you have no configuration for the apps_paths . Delete lines like these
'apps_paths' => array (
 0 => array (
 'path' => OC::$SERVERROOT.'/apps',
 'url' => '/apps',
 'writable' => true,
),
),

3. Make sure to have the apps directory non writable and the custom_apps directory
writable

'apps_paths' => array (
 0 => array (
 'path' => '/var/www/html/apps',
 'url' => '/apps',
 'writable' => false,
),
 1 => array (
 'path' => '/var/www/html/custom_apps',
 'url' => '/custom_apps',
 'writable' => true,
),
),

4. Make sure your data directory is set to /var/www/html/data
'datadirectory' => '/var/www/html/data',

4. Copy your data (nextcloud_app_1 is the name of your Nextcloud container):

If you want to preserve the metadata of your files like timestamps, copy the data directly
on the host to the named volume using plain cp like this:

docker cp ./data/ nextcloud_app_1:/var/www/html/
docker-compose exec app chown -R www-data:www-data /var/www/html/data
docker cp ./theming/ nextcloud_app_1:/var/www/html/
docker-compose exec app chown -R www-data:www-data /var/www/html/theming
docker cp ./config/config.php nextcloud_app_1:/var/www/html/config
docker-compose exec app chown -R www-data:www-data /var/www/html/config

cp --preserve --recursive ./data/ /path/to/nextcloudVolume/data

5. Copy only the custom apps you use (or simply redownload them from the web interface):
docker cp ./custom_apps/ nextcloud_data:/var/www/html/
docker-compose exec app chown -R www-data:www-data /var/www/html/custom_apps

If you have any questions or problems while using the image, please ask for assistance
on the Help Forum first (https://help.nextcloud.com).

Also, most Nextcloud Server matters are covered in the Nextcloud Admin Manual which is routinely
updated.

If you believe you've found a bug (or have an enhancement idea) in the image itself, please search
for already reported bugs and enhancement ideas. If there is an existing open issue, you can either
add to the discussion there or upvote to indicate you're impacted by (or interested in) the same
issue. If you believe you've found a new bug, please create a new Issue so that others can try to
reproduce it and remediation can be tracked.

Thanks for helping to make the Nextcloud community maintained micro-services image better!

Help (Questions / Issues)

Revision #1
Created 12 May 2024 12:17:17 by Administrador
Updated 4 July 2024 18:33:49 by Administrador

https://github.com/nextcloud/docker#help-questions--issues
https://help.nextcloud.com/
https://docs.nextcloud.com/server/latest/admin_manual/
https://github.com/nextcloud/docker/issues
https://github.com/nextcloud/docker/issues

