
Configurações/Customizações NPM

How to load balance your servers using Nginx Proxy Manager and Cloudflare
Step-by-Step Guide to Load Balancing with Nginx Proxy Manager
HTTP Load Balancing Nginx Configuration
Understanding nginx $request_uri

Configurações Nginx
Proxy Manager

Link: https://silicon.blog/2023/05/17/how-to-load-balance-your-servers-using-nginx-proxy-manager-
and-cloudflare/

In the previous posts, you have learned how to self-hosted a WordPress Docker container, reverse
proxy it with Nginx Proxy Manager and configure a Cloudflare Tunnel to access it.

This article will modify the docker-compose.yml to host 2 more WordPress Docker containers first.
After that, you will learn how to load balance it with Nginx Proxy Manager.

If you have followed my previous tutorials. Your docker-compose.yml should look like this:

How to load balance your
servers using Nginx Proxy
Manager and Cloudflare

version: '3'
services:
 app:
 image: 'jc21/nginx-proxy-manager:2.9.18'
 hostname: npm
 container_name: npm
 restart: unless-stopped
 ports:
 - '81:81'
 - '443:443'
 volumes:
 - ./data:/data
 networks:
 - npm

 mysql:
 image: mysql:8.0
 hostname: mysql

https://silicon.blog/2023/05/17/how-to-load-balance-your-servers-using-nginx-proxy-manager-and-cloudflare/
https://silicon.blog/2023/05/17/how-to-load-balance-your-servers-using-nginx-proxy-manager-and-cloudflare/
https://silicon.blog/2023/05/17/how-to-self-host-a-wordpress-docker-container-with-nginx-proxy-manager-and-cloudflare/
https://silicon.blog/2023/05/17/how-to-hide-your-http-https-service-port-using-cloudflare-tunnel-with-nginx-proxy-manager/?swcfpc=1
https://silicon.blog/2023/05/17/how-to-hide-your-http-https-service-port-using-cloudflare-tunnel-with-nginx-proxy-manager/?swcfpc=1

 container_name: mysql
 env_file: .env
 environment:
 MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
 MYSQL_DATABASE: ${MYSQL_DATABASE}
 MYSQL_USER: ${MYSQL_USER}
 MYSQL_PASSWORD: ${MYSQL_PASSWORD}
 volumes:
 - mysql:/var/lib/mysql
 networks:
 - npm

 wordpress:
 image: wordpress:6.2-php8.0-apache
 hostname: wordpress-1
 container_name: wordpress-1
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_HOST: mysql
 WORDPRESS_DB_USER: ${MYSQL_USER}
 WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD}
 WORDPRESS_DB_NAME: ${MYSQL_DATABASE}
 networks:
 - npm

 tunnel:
 image: cloudflare/cloudflared
 hostname: cloudflared
 container_name: cloudflared
 restart: unless-stopped
 command: tunnel run
 environment:
 TUNNEL_TOKEN: ${CLOUDFLARE_TOKEN}
 networks:
 - npm

volumes:

The tunnel container is optional. You can comment on it if you decide not to use Cloudflare Tunnel.
Your .env should look like this:

The CLOUDFLARE_TOKEN is optional. You can remove that line if you decide not to use Cloudflare
Tunnel.

Step 1: Start your docker containers if they are not running.

Step 2: Copy the required files to your project directory.

Step 3: Update your docker-compose.yml using the sample below. You are going to create 2 more
WordPress containers. Comment on the tunnel container if you will not use Cloudflare Tunnel.

 mysql:

networks:
 npm:
 name: npm_network

MYSQL_ROOT_PASSWORD="your_mysql_root_password"
MYSQL_USER="your_mysql_user"
MYSQL_PASSWORD="your_mysql_user_password"
MYSQL_DATABASE="your_wordpress_db1"
CLOUDFLARE_TOKEN="xxx"

sudo docker compose up -d

sudo docker cp npm:app/templates templates
sudo docker cp npm:etc/nginx/conf.d conf.d

version: '3'
services:
 app:
 image: 'jc21/nginx-proxy-manager:2.9.18'
 hostname: npm
 container_name: npm
 restart: unless-stopped
 ports:
 - '81:81'
 - '443:443'
 volumes:

 - ./templates:/app/templates
 - ./conf.d:/etc/nginx/conf.d
 - ./data:/data
 - ./letsencrypt:/etc/letsencrypt #optional
 networks:
 - npm

 mysql:
 image: mysql:8.0
 hostname: mysql
 container_name: mysql
 env_file: .env
 environment:
 MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
 MYSQL_DATABASE: ${MYSQL_DATABASE}
 MYSQL_USER: ${MYSQL_USER}
 MYSQL_PASSWORD: ${MYSQL_PASSWORD}
 volumes:
 - mysql:/var/lib/mysql
 networks:
 - npm

 wordpress:
 image: wordpress:6.2-php8.0-apache
 hostname: wordpress-1
 container_name: wordpress-1
 ports:
 - 8080:80
 environment:
 WORDPRESS_DB_HOST: mysql
 WORDPRESS_DB_USER: ${MYSQL_USER}
 WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD}
 WORDPRESS_DB_NAME: ${MYSQL_DATABASE}
 networks:
 - npm

 mysql2:
 image: mysql:8.0

 hostname: mysql2
 container_name: mysql2
 env_file: .env
 environment:
 MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
 MYSQL_DATABASE: ${MYSQL_DATABASE2}
 MYSQL_USER: ${MYSQL_USER2}
 MYSQL_PASSWORD: ${MYSQL_PASSWORD2}
 volumes:
 - mysql2:/var/lib/mysql
 networks:
 - npm

 wordpress2:
 image: wordpress:6.2-php8.0-apache
 hostname: wordpress-2
 container_name: wordpress-2
 ports:
 - 8081:80
 environment:
 WORDPRESS_DB_HOST: mysql2
 WORDPRESS_DB_USER: ${MYSQL_USER2}
 WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD2}
 WORDPRESS_DB_NAME: ${MYSQL_DATABASE2}
 networks:
 - npm

 mysql3:
 image: mysql:8.0
 hostname: mysql3
 container_name: mysql3
 env_file: .env
 environment:
 MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
 MYSQL_DATABASE: ${MYSQL_DATABASE3}
 MYSQL_USER: ${MYSQL_USER3}
 MYSQL_PASSWORD: ${MYSQL_PASSWORD3}
 volumes:
 - mysql3:/var/lib/mysql

 networks:
 - npm

 wordpress3:
 image: wordpress:6.2-php8.0-apache
 hostname: wordpress-3
 container_name: wordpress-3
 ports:
 - 8082:80
 environment:
 WORDPRESS_DB_HOST: mysql3
 WORDPRESS_DB_USER: ${MYSQL_USER3}
 WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD3}
 WORDPRESS_DB_NAME: ${MYSQL_DATABASE3}
 networks:
 - npm

 tunnel:
 image: cloudflare/cloudflared
 hostname: cloudflared
 container_name: cloudflared
 restart: unless-stopped
 command: tunnel run
 environment:
 TUNNEL_TOKEN: ${CLOUDFLARE_TOKEN}
 networks:
 - npm

volumes:
 mysql:
 mysql2:
 mysql3:

networks:
 npm:
 name: npm_network

Step 4: Edit the .env file as you will host 2 more WordPress containers. Remove the
CLOUDFLARE_TOKEN if you are not going to use Cloudflare Tunnel.

Ctrl + X to save the file.

Step 5: Rebuild the docker containers by

Step 6: Go to WordPress 2 container and WordPress 3 container to install WordPress. Use test2
and test3 as the Site Title.

sudo nano .env
MYSQL_ROOT_PASSWORD="your_mysql_root_password"
MYSQL_USER="your_mysql_user"
MYSQL_PASSWORD="your_mysql_user_password"
MYSQL_DATABASE="your_wordpress_db1"
MYSQL_USER2="your_mysql_user2"
MYSQL_PASSWORD2="your_mysql_user_password2"
MYSQL_DATABASE2="your_wordpress_db2"
MYSQL_USER3="your_mysql_user3"
MYSQL_PASSWORD3="your_mysql_user_password3"
MYSQL_DATABASE3="your_wordpress_db3"
CLOUDFLARE_TOKEN="xxx"

sudo docker compose up -d

http://your_ip:8081/
http://your_ip:8082/

Step 7: After installation, go to the Settings page, and change the WordPress Address (URL) and
Site Address (URL) with your WordPress domain name. In my case, it is https://test.silicon.blog.

It is normal if your browser returns ‘your ip sent an invalid response’ errors.

Everything will be fine after configuring the Nginx Proxy Manager.

Step 8: Modify the proxy_host.conf of the Nginx Proxy Manager docker container. sudo nano
./templates/proxy_host.conf At the top {% if enabled %}, add the following lines

Ctrl + X to save the file.

Step 9: Edit proxy.conf and comment out everything. Those headers will be added manually later.

Custom%
upstream lbtest{{ id }}{
 include /data/nginx/custom/load_balancer{{ id }}.conf;
 keepalive 200;
 keepalive_timeout 120s;
}

sudo nano ./conf.d/include/proxy.conf

Ctrl + X to save the file.

Step 10: Since you will enable load balancing in Nginx Proxy Manager in a hacky way, the load
balancer configuration file will not be generated automatically when we click save.

We have to add and edit the load balancer configuration manually. It may crash if Nginx Proxy
Manager cannot find the related load_balancerX.conf or the load_balancerX.conf is empty at the
start. Therefore, you need to create 10 load balancer configuration files and fill contents to them
for later use by

sudo touch ./data/nginx/custom/load_balancer{1..10}.conf
echo "server 127.0.0.1 weight=1;" | sudo tee ./data/nginx/custom/load_balancer{1..10}.conf 1>/dev/null

You can generate as many load balancer configuration files as you want, but the Nginx Proxy
Manager will take a long time to load if you create more than 100 load balancer configuration files.

Step 11: On the Nginx Proxy Manager dashboard, find out the number of your Proxy host.

In my case, it is proxy host 3.

Step 12: Edit the load balancer configuration file matching the proxy host number. Replace X with
your proxy host number. In my case, it is load_balancer3.conf.

sudo mkdir ./data/nginx/custom/
sudo nano ./data/nginx/custom/load_balancerX.conf

Add the WordPress server to the load balancer.

In my case, it is

Ctrl + X to save the file.

server your_wordpress_server1_ip:port weight=1;
server your_wordpress_server2_ip:port weight=1;
server your_wordpress_server3_ip:port weight=1;

server wordpress-1 weight=1;
server wordpress-2 weight=1;
server wordpress-3 weight=1;

Step 13: Edit your proxy host. Change the Forward Hostname / IP to loadbalancer. The Forward
Port does not matter. The scheme will be HTTP in this article, and you can change it to HTTPS later.

Step 14: Remember to add an SSL certificate to your site in the SSL section. HTTP/2 Support is
optional.

Step 15: Go to the Advanced page, and add the following script.

Replace lbtestX with your proxy host number. In my case, it is lbtest3.

If needed, you should return to step 10 and manually create more load balancer files.

Your Nginx Proxy Manager may crash at the start if it cannot find the corresponding load balancer
file.

In my case, it is

location / {
proxy_set_header Host $host;
proxy_set_header X-Forwarded-Host $server_name;
proxy_connect_timeout 15s;
proxy_read_timeout 15s;
proxy_next_upstream error timeout http_500 http_502 http_503 http_504 non_idempotent;
proxy_set_header Connection "";

if ($server != "loadbalancer"){
 proxy_pass $forward_scheme://$server:$port$request_uri;
}
if ($server = "loadbalancer"){
 proxy_pass $forward_scheme://lbtestX$request_uri;
}
}

location / {
proxy_set_header Host $host;

 Try to access your site a few times. The site title should change randomly if everything works
properly.

proxy_set_header X-Forwarded-Host $server_name;
proxy_connect_timeout 15s;
proxy_read_timeout 15s;
proxy_next_upstream error timeout http_500 http_502 http_503 http_504 non_idempotent;
proxy_set_header Connection "";

if ($server != "loadbalancer"){
 proxy_pass $forward_scheme://$server:$port$request_uri;
}
if ($server = "loadbalancer"){
 proxy_pass $forward_scheme://lbtest3$request_uri;
}
}

Congratulation if everything runs smoothly on your side.

The following article will teach you how to create a failover site using Nginx Proxy Manager and
cPanel (or other web hosting platforms).

Check out this article if you want to enable HTTPS (install SSL certificate on your Apache server) on
your WordPress docker container.

I am not using it in a large-scale high-traffic production site. Take risks if you use this method to
load balance your web servers.

Feel free to comment on any potential security issues with the proxy header. I am not familiar with
it.

https://silicon.blog/2023/05/17/how-to-create-a-temporary-failover-wordpress-server-using-nginx-proxy-manager-with-cloudflare/?swcfpc=1
https://silicon.blog/2023/05/17/how-to-create-a-temporary-failover-wordpress-server-using-nginx-proxy-manager-with-cloudflare/?swcfpc=1
https://silicon.blog/2023/05/17/how-to-enable-https-on-your-wordpress-docker-container-with-cloudflare-origin-lets-encrypt-certificate/?swcfpc=1

Link: https://blog.devomkar.com/load-balancer-nginx-proxy-manager/

JAN 10, 2024 2 MIN READ DOCKER
Load balancing is a crucial aspect of managing web traffic efficiently, ensuring high availability,
and optimizing resource utilization. Nginx Proxy Manager is a powerful tool that simplifies the
process of setting up and managing reverse proxies with load balancing capabilities. In this step-
by-step guide, we'll walk through the process of configuring load balancing using Nginx Proxy
Manager.

1. Nginx Proxy Manager installed and running.
2. Access to the Nginx Proxy Manager web interface.
3. Knowledge of the IP addresses and ports of your backend servers.

Open your web browser and navigate to the Nginx Proxy Manager web interface. Typically, it's
accessible at http://your-server-ip:81 . Log in using your credentials.

Connect to your server where Nginx Proxy Manager is installed.
Navigate to the location where you have mounted the Nginx configuration files. In this
case, it's /data/nginx/custom/.

Step-by-Step Guide to Load
Balancing with Nginx Proxy
Manager

Prerequisites:

Step 1: Access Nginx Proxy Manager Web
Interface

Step 2: Create Custom Configuration
Snippet

https://blog.devomkar.com/load-balancer-nginx-proxy-manager/
https://blog.devomkar.com/tag/docker/

Copy

Create a new file named http_top.conf:

Copy

Edit the file using a text editor (e.g., nano or vim):

Copy

Add the following upstream block to the file, specifying the IP addresses and ports of your
backend servers:

Copy

Save the changes and exit the text editor.

In the Nginx Proxy Manager dashboard, click on the "Proxy Hosts" tab in the left sidebar.
Click the "Add Proxy Host" button to create a new reverse proxy configuration.
Fill in the necessary details in the basic configuration (Domain Names, Forward
Hostname/IP, Forward Port, etc.).
Navigate to the "Advanced" tab.
In the "Custom Nginx Configuration" section, add the following

cd /data/nginx/custom

touch http_top.conf

nano http_top.conf

upstream backend {
 server 192.168.0.69:8080;
 server 192.168.0.100:8090 backup;
}

Step 3: Add Custom Configuration in
Nginx Proxy Manager

location / {
 proxy_pass http://backend;
}

Copy

Save the proxy host configuration.

1. After saving the configuration, test the load balancing setup by accessing your domain or
subdomain in a web browser.

2. Monitor the Nginx Proxy Manager dashboard and the access logs to ensure that requests
are being distributed among the backend servers.

For more information on HTTP Load Balancing in NGINX click here.

Congratulations! You have successfully set up load balancing using custom Nginx configuration
snippets in Nginx Proxy Manager. Adjust the configuration as needed and scale your infrastructure
to handle increased traffic efficiently.

Step 4: Test and Verify

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com

Link: https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-
balancer/?ref=blog.devomkar.com

Load balance HTTP traffic across web or application server groups, with several algorithms and
advanced features like slow-start and session persistence.

Load balancing across multiple application instances is a commonly used technique for optimizing
resource utilization, maximizing throughput, reducing latency, and ensuring fault‑tolerant
configurations.

Watch the NGINX Plus for Load Balancing and Scaling webinar on demand for a deep dive on
techniques that NGINX users employ to build large‑scale, highly available web services.

NGINX and NGINX Plus can be used in different deployment scenarios as a very efficient HTTP load
balancer.

To start using NGINX Plus or NGINX Open Source to load balance HTTP traffic to a group of servers,
first you need to define the group with the upstream directive. The directive is placed in the http
 context.

Servers in the group are configured using the server directive (not to be confused with the server
 block that defines a virtual server running on NGINX). For example, the following configuration
defines a group named backend and consists of three server configurations (which may resolve in

HTTP Load Balancing Nginx
Configuration

Overview

Proxying HTTP Traffic to a Group of
Servers

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com
https://www.nginx.com/resources/webinars/nginx-plus-for-load-balancing-30-min/
https://www.nginx.com/blog/nginx-load-balance-deployment-models/
https://www.nginx.com/blog/nginx-load-balance-deployment-models/
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream
https://nginx.org/en/docs/http/ngx_http_core_module.html#http
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#server

more than three actual servers):

 Copy

To pass requests to a server group, the name of the group is specified in the proxy_pass directive
(or the fastcgi_pass , memcached_pass , scgi_pass , or uwsgi_pass directives for those protocols.) In the
next example, a virtual server running on NGINX passes all requests to the backend upstream
group defined in the previous example:

 Copy

The following example combines the two snippets above and shows how to proxy HTTP requests to
the backend server group. The group consists of three servers, two of them running instances of
the same application while the third is a backup server. Because no load‑balancing algorithm is
specified in the upstream block, NGINX uses the default algorithm, Round Robin:

 Copy

http {
 upstream backend {
 server backend1.example.com weight=5;
 server backend2.example.com;
 server 192.0.0.1 backup;
 }
}

server {
 location / {
 proxy_pass http://backend;
 }
}

http {
 upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 server 192.0.0.1 backup;
 }

 server {
 location / {
 proxy_pass http://backend;

https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass
https://nginx.org/en/docs/http/ngx_http_fastcgi_module.html#fastcgi_pass
https://nginx.org/en/docs/http/ngx_http_memcached_module.html#memcached_pass
https://nginx.org/en/docs/http/ngx_http_scgi_module.html#scgi_pass
https://nginx.org/en/docs/http/ngx_http_uwsgi_module.html#uwsgi_pass

NGINX Open Source supports four load‑balancing methods, and NGINX Plus adds two more
methods:

1. Round Robin – Requests are distributed evenly across the servers, with server weights
 taken into consideration. This method is used by default (there is no directive for
enabling it):
 Copy

upstream backend {
 # no load balancing method is specified for Round Robin
 server backend1.example.com;
 server backend2.example.com;
}

2. Least Connections – A request is sent to the server with the least number of active
connections, again with server weights taken into consideration:
 Copy

upstream backend {
 least_conn;
 server backend1.example.com;
 server backend2.example.com;
}

3. IP Hash – The server to which a request is sent is determined from the client IP address. In
this case, either the first three octets of the IPv4 address or the whole IPv6 address are
used to calculate the hash value. The method guarantees that requests from the same
address get to the same server unless it is not available.
 Copy

 }
 }
}

Choosing a Load-Balancing Method

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#weights
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#least_conn
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#weights
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#ip_hash

If one of the servers needs to be temporarily removed from the load‑balancing rotation, it
can be marked with the down parameter in order to preserve the current hashing of client
IP addresses. Requests that were to be processed by this server are automatically sent to
the next server in the group:
 Copy

upstream backend {
 ip_hash;
 server backend1.example.com;
 server backend2.example.com;
}

upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 server backend3.example.com down;
}

4. Generic Hash – The server to which a request is sent is determined from a user‑defined
key which can be a text string, variable, or a combination. For example, the key may be a
paired source IP address and port, or a URI as in this example:
 Copy

The optional consistent parameter to the hash directive enables ketama consistent‑hash
load balancing. Requests are evenly distributed across all upstream servers based on the
user‑defined hashed key value. If an upstream server is added to or removed from an
upstream group, only a few keys are remapped which minimizes cache misses in the case
of load‑balancing cache servers or other applications that accumulate state.

upstream backend {
 hash $request_uri consistent;
 server backend1.example.com;
 server backend2.example.com;
}

5. Least Time (NGINX Plus only) – For each request, NGINX Plus selects the server with the
lowest average latency and the lowest number of active connections, where the lowest
average latency is calculated based on which of the following parameters to the least_time
 directive is included:

header – Time to receive the first byte from the server
last_byte – Time to receive the full response from the server
last_byte inflight – Time to receive the full response from the server, taking into
account incomplete requests

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#down
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#hash
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#hash
http://www.last.fm/user/RJ/journal/2007/04/10/rz_libketama_-_a_consistent_hashing_algo_for_memcache_clients
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#least_time
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#least_time

 Copy

upstream backend {
 least_time header;
 server backend1.example.com;
 server backend2.example.com;
}

6. Random – Each request will be passed to a randomly selected server. If the two
 parameter is specified, first, NGINX randomly selects two servers taking into account
server weights, and then chooses one of these servers using the specified method:

least_conn – The least number of active connections
least_time=header (NGINX Plus) – The least average time to receive the response
header from the server ($upstream_header_time)
least_time=last_byte (NGINX Plus) – The least average time to receive the full response
from the server ($upstream_response_time)

 Copy

The Random load balancing method should be used for distributed environments where
multiple load balancers are passing requests to the same set of backends. For
environments where the load balancer has a full view of all requests, use other load
balancing methods, such as round robin, least connections and least time.

upstream backend {
 random two least_time=last_byte;
 server backend1.example.com;
 server backend2.example.com;
 server backend3.example.com;
 server backend4.example.com;
}

By default, NGINX distributes requests among the servers in the group according to their weights
using the Round Robin method. The weight parameter to the server directive sets the weight of a
server; the default is 1 :

Note: When configuring any method other than Round Robin, put the
corresponding directive (hash , ip_hash , least_conn , least_time , or random) above
the list of server directives in the upstream {} block.

“

Server Weights

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#random
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#var_upstream_header_time
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#var_upstream_response_time
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#weight
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#server
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#hash
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#ip_hash
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#least_conn
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#least_time
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#random
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream

 Copy

In the example, backend1.example.com has weight 5 ; the other two servers have the default
weight (1), but the one with IP address 192.0.0.1 is marked as a backup server and does not
receive requests unless both of the other servers are unavailable. With this configuration of
weights, out of every 6 requests, 5 are sent to backend1.example.com and 1 to
backend2.example.com.

The server slow‑start feature prevents a recently recovered server from being overwhelmed by
connections, which may time out and cause the server to be marked as failed again.

In NGINX Plus, slow‑start allows an upstream server to gradually recover its weight from 0 to its
nominal value after it has been recovered or became available. This can be done with the
slow_start parameter to the server directive:

 Copy

The time value (here, 30 seconds) sets the time during which NGINX Plus ramps up the number of
connections to the server to the full value.

Note that if there is only a single server in a group, the max_fails , fail_timeout , and slow_start
 parameters to the server directive are ignored and the server is never considered unavailable.

upstream backend {
 server backend1.example.com weight=5;
 server backend2.example.com;
 server 192.0.0.1 backup;
}

Server Slow-Start

upstream backend {
 server backend1.example.com slow_start=30s;
 server backend2.example.com;
 server 192.0.0.1 backup;
}

Enabling Session Persistence

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#slow_start
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#max_fails
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#fail_timeout
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#slow_start

Session persistence means that NGINX Plus identifies user sessions and routes all requests in a
given session to the same upstream server.

NGINX Plus supports three session persistence methods. The methods are set with the sticky
 directive. (For session persistence with NGINX Open Source, use the hash or ip_hash directive as
described above.)

Sticky cookie – NGINX Plus adds a session cookie to the first response from the upstream
group and identifies the server that sent the response. The client’s next request contains
the cookie value and NGINX Plus route the request to the upstream server that responded
to the first request:
 Copy

In the example, the srv_id parameter sets the name of the cookie. The optional expires
 parameter sets the time for the browser to keep the cookie (here, 1 hour). The optional
domain parameter defines the domain for which the cookie is set, and the optional path
 parameter defines the path for which the cookie is set. This is the simplest session
persistence method.

upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 sticky cookie srv_id expires=1h domain=.example.com path=/;
}

Sticky route – NGINX Plus assigns a “route” to the client when it receives the first request.
All subsequent requests are compared to the route parameter of the server directive to
identify the server to which the request is proxied. The route information is taken from
either a cookie or the request URI.
 Copy

upstream backend {
 server backend1.example.com route=a;
 server backend2.example.com route=b;
 sticky route $route_cookie $route_uri;
}

Sticky learn method – NGINX Plus first finds session identifiers by inspecting requests and
responses. Then NGINX Plus “learns” which upstream server corresponds to which session
identifier. Generally, these identifiers are passed in a HTTP cookie. If a request contains a
session identifier already “learned”, NGINX Plus forwards the request to the corresponding
server:
 Copy

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#sticky
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#method
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#sticky_cookie
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#sticky_route
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#route
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#sticky_learn

In the example, one of the upstream servers creates a session by setting the cookie
EXAMPLECOOKIE in the response.
The mandatory create parameter specifies a variable that indicates how a new session is
created. In the example, new sessions are created from the cookie EXAMPLECOOKIE sent by
the upstream server.
The mandatory lookup parameter specifies how to search for existing sessions. In our
example, existing sessions are searched in the cookie EXAMPLECOOKIE sent by the client.
The mandatory zone parameter specifies a shared memory zone where all information
about sticky sessions is kept. In our example, the zone is named client_sessions and is
1 megabyte in size.
This is a more sophisticated session persistence method than the previous two as it does
not require keeping any cookies on the client side: all info is kept server‑side in the shared
memory zone.
If there are several NGINX instances in a cluster that use the “sticky learn” method, it is
possible to sync the contents of their shared memory zones on conditions that:

the zones have the same name
the zone_sync functionality is configured on each instance
the sync parameter is specified
 Copy

See Runtime State Sharing in a Cluster for details.

 sticky learn
 create=$upstream_cookie_examplecookie
 lookup=$cookie_examplecookie
 zone=client_sessions:1m
 timeout=1h
 sync;
}

upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 sticky learn
 create=$upstream_cookie_examplecookie
 lookup=$cookie_examplecookie
 zone=client_sessions:1m
 timeout=1h;
}

https://nginx.org/en/docs/stream/ngx_stream_zone_sync_module.html#zone_sync
https://docs.nginx.com/nginx/admin-guide/high-availability/zone_sync/

With NGINX Plus, it is possible to limit the number of active connections to an upstream server by
specifying the maximum number with the max_conns parameter.

If the max_conns limit has been reached, the request is placed in a queue for further processing,
provided that the queue directive is also included to set the maximum number of requests that can
be simultaneously in the queue:

 Copy

If the queue is filled up with requests or the upstream server cannot be selected during the timeout
specified by the optional timeout parameter, the client receives an error.

Note that the max_conns limit is ignored if there are idle keepalive connections opened in other
worker processes . As a result, the total number of connections to the server might exceed the
max_conns value in a configuration where the memory is shared with multiple worker processes.

NGINX can continually test your HTTP upstream servers, avoid the servers that have failed, and
gracefully add the recovered servers into the load‑balanced group.

See HTTP Health Checks for instructions how to configure health checks for HTTP.

Limiting the Number of
Connections

upstream backend {
 server backend1.example.com max_conns=3;
 server backend2.example.com;
 queue 100 timeout=70;
}

Configuring Health Checks

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#max_conns
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#queue
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#keepalive
https://nginx.org/en/docs/ngx_core_module.html#worker_processes
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#zone
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/

If an upstream block does not include the zone directive, each worker process keeps its own copy
of the server group configuration and maintains its own set of related counters. The counters
include the current number of connections to each server in the group and the number of failed
attempts to pass a request to a server. As a result, the server group configuration cannot be
modified dynamically.

When the zone directive is included in an upstream block, the configuration of the upstream group
is kept in a memory area shared among all worker processes. This scenario is dynamically
configurable, because the worker processes access the same copy of the group configuration and
utilize the same related counters.

The zone directive is mandatory for active health checks and dynamic reconfiguration of the
upstream group. However, other features of upstream groups can benefit from the use of this
directive as well.

For example, if the configuration of a group is not shared, each worker process maintains its own
counter for failed attempts to pass a request to a server (set by the max_fails parameter). In this
case, each request gets to only one worker process. When the worker process that is selected to
process a request fails to transmit the request to a server, other worker processes don’t know
anything about it. While some worker process can consider a server unavailable, others might still
send requests to this server. For a server to be definitively considered unavailable, the number of
failed attempts during the timeframe set by the fail_timeout parameter must equal max_fails
 multiplied by the number of worker processes. On the other hand, the zone directive guarantees
the expected behavior.

Similarly, the Least Connections load‑balancing method might not work as expected without the
zone directive, at least under low load. This method passes a request to the server with the
smallest number of active connections. If the configuration of the group is not shared, each worker
process uses its own counter for the number of connections and might send a request to the same
server that another worker process just sent a request to. However, you can increase the number
of requests to reduce this effect. Under high load requests are distributed among worker processes
evenly, and the Least Connections method works as expected.

It is not possible to recommend an ideal memory‑zone size, because usage patterns vary widely.
The required amount of memory is determined by which features (such as session persistence,

Sharing Data with Multiple Worker
Processes

Setting the Zone Size

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#zone
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#health_active
https://docs.nginx.com/nginx/admin-guide/load-balancer/dynamic-configuration-api/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#health_passive
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#method
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#sticky

health checks, or DNS re‑resolving) are enabled and how the upstream servers are identified.

As an example, with the sticky_route session persistence method and a single health check
enabled, a 256‑KB zone can accommodate information about the indicated number of upstream
servers:

128 servers (each defined as an IP‑address:port pair)
88 servers (each defined as hostname:port pair where the hostname resolves to a single
IP address)
12 servers (each defined as hostname:port pair where the hostname resolves to multiple
IP addresses)

The configuration of a server group can be modified at runtime using DNS.

For servers in an upstream group that are identified with a domain name in the server directive,
NGINX Plus can monitor changes to the list of IP addresses in the corresponding DNS record, and
automatically apply the changes to load balancing for the upstream group, without requiring a
restart. This can be done by including the resolver directive in the http block along with the resolve
 parameter to the server directive:

 Copy

Configuring HTTP Load Balancing
Using DNS

http {
 resolver 10.0.0.1 valid=300s ipv6=off;
 resolver_timeout 10s;
 server {
 location / {
 proxy_pass http://backend;
 }
 }
 upstream backend {
 zone backend 32k;
 least_conn;
 # ...
 server backend1.example.com resolve;
 server backend2.example.com resolve;

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#health_active
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#resolve
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#server
https://nginx.org/en/docs/http/ngx_http_core_module.html#resolver
https://nginx.org/en/docs/http/ngx_http_core_module.html#http
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#resolve

In the example, the resolve parameter to the server directive tells NGINX Plus to periodically
re‑resolve the backend1.example.com and backend2.example.com domain names into IP
addresses.

The resolver directive defines the IP address of the DNS server to which NGINX Plus sends requests
(here, 10.0.0.1). By default, NGINX Plus re‑resolves DNS records at the frequency specified by
time‑to‑live (TTL) in the record, but you can override the TTL value with the valid parameter; in the
example it is 300 seconds, or 5 minutes.

The optional ipv6=off parameter means only IPv4 addresses are used for load balancing, though
resolving of both IPv4 and IPv6 addresses is supported by default.

If a domain name resolves to several IP addresses, the addresses are saved to the upstream
configuration and load balanced. In our example, the servers are load balanced according to the
Least Connections load‑balancing method. If the list of IP addresses for a server has changed,
NGINX Plus immediately starts load balancing across the new set of addresses.

In NGINX Plus Release 7 and later, NGINX Plus can proxy Microsoft Exchange traffic to a server or a
group of servers and load balance it.

To set up load balancing of Microsoft Exchange servers:

1. In a location block, configure proxying to the upstream group of Microsoft Exchange
servers with the proxy_pass directive:
 Copy

location / {
 proxy_pass https://exchange;
 # ...
}

2. In order for Microsoft Exchange connections to pass to the upstream servers, in the
location block set the proxy_http_version directive value to 1.1 , and the proxy_set_header
 directive to Connection "" , just like for a keepalive connection:

 }
}

Load Balancing of Microsoft
Exchange Servers

https://nginx.org/en/docs/http/ngx_http_core_module.html#resolver
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#method
https://docs.nginx.com/nginx/releases/#nginxplus-release7-r7
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_http_version
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_set_header

 Copy

location / {
 # ...
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 # ...
}

3. In the http block, configure a upstream group of Microsoft Exchange servers with an
upstream block named the same as the upstream group specified with the proxy_pass
 directive in Step 1. Then specify the ntlm directive to allow the servers in the group to
accept requests with NTLM authentication:
 Copy

http {
 # ...
 upstream exchange {
 zone exchange 64k;
 ntlm;
 # ...
 }
}

4. Add Microsoft Exchange servers to the upstream group and optionally specify a
load‑balancing method:
 Copy

http {
 # ...
 upstream exchange {
 zone exchange 64k;
 ntlm;
 server exchange1.example.com;
 server exchange2.example.com;
 # ...
 }
}

Complete NTLM Example

https://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass
https://nginx.org/en/docs/http/ngx_http_upstream_module.html#ntlm
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/?ref=blog.devomkar.com#method

 Copy

For more information about configuring Microsoft Exchange and NGINX Plus, see the Load
Balancing Microsoft Exchange Servers with NGINX Plus deployment guide.

With NGINX Plus, the configuration of an upstream server group can be modified dynamically using
the NGINX Plus API. A configuration command can be used to view all servers or a particular server
in a group, modify parameter for a particular server, and add or remove servers. For more
information and instructions, see Configuring Dynamic Load Balancing with the NGINX Plus API.

http {
 # ...
 upstream exchange {
 zone exchange 64k;
 ntlm;
 server exchange1.example.com;
 server exchange2.example.com;
 }

 server {
 listen 443 ssl;
 ssl_certificate /etc/nginx/ssl/company.com.crt;
 ssl_certificate_key /etc/nginx/ssl/company.com.key;
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

 location / {
 proxy_pass https://exchange;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 }
 }
}

Dynamic Configuration Using the
NGINX Plus API

https://docs.nginx.com/nginx/deployment-guides/load-balance-third-party/microsoft-exchange/
https://docs.nginx.com/nginx/deployment-guides/load-balance-third-party/microsoft-exchange/
https://docs.nginx.com/nginx/admin-guide/load-balancer/dynamic-configuration-api/

Link: https://stackoverflow.com/questions/48708361/nginx-request-uri-vs-uri

As we came across this question often ourselves, I decided to write a quick article about the
$request_uri handling of nginx. According to the ngx_http_core_module-documentation, the
variable $request_uri is defined as:

While this seems clear at first, it is not well defined. We have done some trial and error and can
best explain it by examples using real cases:

1. For the URL:
https://www.webhosting24.com/understanding-nginx-request_uri/
the nginx variable $request_uri is populated as follows:
/understanding-nginx-request_uri/

2. For the URL:
https://www.webhosting24.com/cp/cart.php?a=add&domain=register
the nginx variable $request_uri is populated as follows:
/cp/cart.php?a=add&domain=register

3. For the URL:
https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2
the nginx variable $request_uri would still be populated only as follows:
/Protocols/rfc2616/rfc2616-sec3.html
as #sec3.2 is just a fragment/comment/anchor and not part of the URI.

Simply put, the $request_uri contains the full path (/understanding-nginx-request_uri/ in example 1
or /cp/cart.php in example 2 above) and any argument strings that may be present
(“?a=add&domain=register” in example 2 above), but excludes the schema (https:// and the port
(implicit 443) in both examples above) as defined by RFC for the URL:

full original request URI (with arguments)

http_URL = "http(s):" "//" host [":" port] [abs_path ["?" query]]

Uniform Resource Identifiers

Understanding nginx
$request_uri

https://stackoverflow.com/questions/48708361/nginx-request-uri-vs-uri
https://www.webhosting24.com/understanding-nginx-request_uri/
https://www.webhosting24.com/cp/cart.php?a=add&domain=register

By RFC URIs have been known by many names: WWW addresses, Universal Document Identifiers,
Universal Resource Identifiers, and finally the combination of Uniform Resource Locators (URL). As
far as HTTP is concerned, Uniform Resource Identifiers are simply formatted strings which
identify–via name, location, or any other characteristic–a resource.

Further Sources:
https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_uri

https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_uri

