How to load balance your
servers using Nginx Proxy
Manager and Cloudflare

Link: https://silicon.blog/2023/05/17/how-to-load-balance-your-servers-using-nginx-proxy-manager-

and-cloudflare/

In the previous posts, you have learned how to self-hosted a WordPress Docker container, reverse

proxy it with Nginx Proxy Manager and configure a Cloudflare Tunnel to access it.

This article will modify the docker-compose.yml to host 2 more WordPress Docker containers first.
After that, you will learn how to load balance it with Nginx Proxy Manager.

If you have followed my previous tutorials. Your docker-compose.yml should look like this:

version: '3'
services:
app:
image: 'jc21/nginx-proxy-manager:2.9.18'
hostname: npm
container_name: npm
restart: unless-stopped
ports:
-'81:81'
-'443:443!
volumes:
- ./data:/data
networks:

-npm

mysql:
image: mysql:8.0

https://silicon.blog/2023/05/17/how-to-load-balance-your-servers-using-nginx-proxy-manager-and-cloudflare/
https://silicon.blog/2023/05/17/how-to-load-balance-your-servers-using-nginx-proxy-manager-and-cloudflare/
https://silicon.blog/2023/05/17/how-to-self-host-a-wordpress-docker-container-with-nginx-proxy-manager-and-cloudflare/
https://silicon.blog/2023/05/17/how-to-hide-your-http-https-service-port-using-cloudflare-tunnel-with-nginx-proxy-manager/?swcfpc=1
https://silicon.blog/2023/05/17/how-to-hide-your-http-https-service-port-using-cloudflare-tunnel-with-nginx-proxy-manager/?swcfpc=1

hostname: mysq|

container_name: mysq|

env _file: .env

environment:
MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
MYSQL _DATABASE: ${MYSQL_DATABASE}
MYSQL_USER: ${MYSQL _USER}
MYSQL_PASSWORD: ${MYSQL_PASSWORD}

volumes:
- mysgqgl:/var/lib/mysql

networks:

- npm

wordpress:

image: wordpress:6.2-php8.0-apache

hostname: wordpress-1

container_name: wordpress-1

ports:
- 8080:80

environment:
WORDPRESS_DB_HOST: mysq|
WORDPRESS_DB_USER: ${MYSQL_USER}
WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD}
WORDPRESS DB _NAME: ${MYSQL DATABASE}

networks:

-npm

tunnel:
image: cloudflare/cloudflared
hostname: cloudflared
container_name: cloudflared
restart: unless-stopped
command: tunnel run
environment:
TUNNEL TOKEN: ${CLOUDFLARE_TOKEN}
networks:

- npm

volumes:

mysql:

networks:
npm:

name: npm_network

The tunnel container is optional. You can comment on it if you decide not to use Cloudflare Tunnel.
Your .env should look like this:

MYSQL_ROOT_PASSWORD="your_mysql_root_password"
MYSQL_USER="your_mysql_user"
MYSQL_PASSWORD="your_mysql_user_password"
MYSQL_DATABASE="your_wordpress_db1l"
CLOUDFLARE_TOKEN="xxx"

The CLOUDFLARE_TOKEN is optional. You can remove that line if you decide not to use Cloudflare
Tunnel.

Step 1: Start your docker containers if they are not running.

sudo docker compose up -d

Step 2: Copy the required files to your project directory.

sudo docker cp npm:app/templates templates

sudo docker cp npm:etc/nginx/conf.d conf.d

Step 3: Update your docker-compose.yml using the sample below. You are going to create 2 more
WordPress containers. Comment on the tunnel container if you will not use Cloudflare Tunnel.

version: '3'
services:
app:
image: 'jc21/nginx-proxy-manager:2.9.18'
hostname: npm
container_name: npm
restart: unless-stopped
ports:

-'81:81'

-'443:443'
volumes:

- ./templates:/app/templates

.Jconf.d:/etc/nginx/conf.d

- ./data:/data

- ./letsencrypt:/etc/letsencrypt #optional
networks:

- npm

mysql:

image: mysql:8.0

hostname: mysq|

container_name: mysq|

env_file: .env

environment:
MYSQL _ROOT_PASSWORD: ${MYSQL ROOT_PASSWORD}
MYSQL _DATABASE: ${MYSQL_DATABASE}
MYSQL_USER: ${MYSQL USER}
MYSQL_PASSWORD: ${MYSQL_PASSWORD}

volumes:
- mysql:/var/lib/mysq|l

networks:

- npm

wordpress:

image: wordpress:6.2-php8.0-apache

hostname: wordpress-1

container_name: wordpress-1

ports:
- 8080:80

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_USER: ${MYSQL USER}
WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD}
WORDPRESS DB _NAME: ${MYSQL DATABASE}

networks:

- npm

mysql2:

image: mysql:8.0

hostname: mysql2

container_name: mysql2

env_file: .env

environment:
MYSQL_ROOT_PASSWORD: ${MYSQL ROOT PASSWORD}
MYSQL _DATABASE: ${MYSQL_DATABASE2}
MYSQL_USER: ${MYSQL_USER2}
MYSQL _PASSWORD: ${MYSQL PASSWORD?2}

volumes:
- mysql2:/var/lib/mysql

networks:

- npm

wordpress2:

image: wordpress:6.2-php8.0-apache

hostname: wordpress-2

container_name: wordpress-2

ports:
- 8081:80

environment:
WORDPRESS_DB_HOST: mysql2
WORDPRESS_DB_USER: ${MYSQL_USER2}
WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD?2}
WORDPRESS_DB_NAME: ${MYSQL_DATABASE2}

networks:

- npm

mysql3:

image: mysql:8.0

hostname: mysql3

container_name: mysql3

env_file: .env

environment:
MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
MYSQL DATABASE: ${MYSQL _DATABASE3}

MYSQL_USER: ${MYSQL_USER3}
MYSQL_PASSWORD: ${MYSQL_PASSWORD3}
volumes:
- mysql3:/var/lib/mysql
networks:

- npm

wordpress3:

image: wordpress:6.2-php8.0-apache

hostname: wordpress-3

container_name: wordpress-3

ports:
- 8082:80

environment:
WORDPRESS_DB_HOST: mysql3
WORDPRESS _DB_USER: ${MYSQL USER3}
WORDPRESS_DB_PASSWORD: ${MYSQL_PASSWORD3}
WORDPRESS DB _NAME: ${MYSQL _DATABASE3}

networks:

- npm

tunnel:
image: cloudflare/cloudflared
hostname: cloudflared
container_name: cloudflared
restart: unless-stopped
command: tunnel run
environment:
TUNNEL TOKEN: ${CLOUDFLARE_TOKEN}
networks:

-npm

volumes:
mysql:
mysql2:
mysql3:

networks:
npm:

name: npm_network

Step 4: Edit the .env file as you will host 2 more WordPress containers. Remove the
CLOUDFLARE_TOKEN if you are not going to use Cloudflare Tunnel.

sudo nano .env
MYSQL_ROOT_PASSWORD="your_mysql_root_password"
MYSQL_USER="your_mysql_user"

MYSQL _PASSWORD="your_mysql_user_password"
MYSQL _DATABASE="your_wordpress_db1l"
MYSQL_USER2="your_mysql_user2"
MYSQL_PASSWORD2="your_mysql_user_password2"
MYSQL_DATABASE2="your_wordpress_db2"
MYSQL_USER3="your_mysql_user3"

MYSQL _PASSWORD3="your_mysql _user_password3"
MYSQL_DATABASE3="your_wordpress_db3"
CLOUDFLARE_TOKEN="xxx"

Ctrl + X to save the file.

Step 5: Rebuild the docker containers by

sudo docker compose up -d

Step 6: Go to WordPress 2 container and WordPress 3 container to install WordPress. Use test2
and test3 as the Site Title.

http://your _ip:8081/
http://your_ip:8082/

Step 7: After installation, go to the Settings page, and change the WordPress Address (URL) and
Site Address (URL) with your WordPress domain name. In my case, it is https://test.silicon.blog.

It is normal if your browser returns ‘your ip sent an invalid response’ errors.
Everything will be fine after configuring the Nginx Proxy Manager.

Step 8: Modify the proxy_host.conf of the Nginx Proxy Manager docker container. sudo nano
Jtemplates/proxy_host.conf At the top {% if enabled %}, add the following lines

Custom%
upstream Ibtest{{ id }}{

include /data/nginx/custom/load_balancer{{ id }}.conf;
keepalive 200;

keepalive_timeout 120s;

Ctrl + X to save the file.

Step 9: Edit proxy.conf and comment out everything. Those headers will be added manually later.

sudo nano ./conf.d/include/proxy.conf

Ctrl + X to save the file.

Step 10: Since you will enable load balancing in Nginx Proxy Manager in a hacky way, the load
balancer configuration file will not be generated automatically when we click save.

We have to add and edit the load balancer configuration manually. It may crash if Nginx Proxy
Manager cannot find the related load_balancerX.conf or the load_balancerX.conf is empty at the
start. Therefore, you need to create 10 load balancer configuration files and fill contents to them
for later use by

sudo touch ./data/nginx/custom/load_balancer{1..10}.conf

echo "server 127.0.0.1 weight=1;" | sudo tee ./data/nginx/custom/load_balancer{1..10}.conf 1>/dev/null

You can generate as many load balancer configuration files as you want, but the Nginx Proxy
Manager will take a long time to load if you create more than 100 load balancer configuration files.

Step 11: On the Nginx Proxy Manager dashboard, find out the number of your Proxy host.

In my case, it is proxy host 3.

Step 12: Edit the load balancer configuration file matching the proxy host number. Replace X with
your proxy host number. In my case, it is load_balancer3.conf.

sudo mkdir ./data/nginx/custom/

sudo nano ./data/nginx/custom/load_balancerX.conf

Add the WordPress server to the load balancer.

server your_wordpress_serverl_ip:port weight=1;
server your_wordpress_server2_ip:port weight=1;

server your_wordpress_server3_ip:port weight=1;

In my case, it is

server wordpress-1 weight=1;

server wordpress-2 weight=1;

server wordpress-3 weight=1;

Ctrl + X to save the file.

Step 13: Edit your proxy host. Change the Forward Hostname / IP to loadbalancer. The Forward
Port does not matter. The scheme will be HTTP in this article, and you can change it to HTTPS later.

Step 14: Remember to add an SSL certificate to your site in the SSL section. HTTP/2 Support is
optional.

Step 15: Go to the Advanced page, and add the following script.
Replace IbtestX with your proxy host number. In my case, it is Ibtest3.
If needed, you should return to step 10 and manually create more load balancer files.

Your Nginx Proxy Manager may crash at the start if it cannot find the corresponding load balancer
file.

location / {

proxy_set header Host $host;

proxy_set header X-Forwarded-Host $server_name;

proxy_connect _timeout 15s;

proxy read_timeout 15s;

proxy_next_upstream error timeout http_500 http_502 http 503 http_504 non_idempotent;

proxy_set_header Connection "*;

if ($server != "loadbalancer"){
proxy_pass $forward_scheme://$server:$port$request_uri;
}
if ($server = "loadbalancer"){
proxy_pass $forward_scheme://IbtestX$request_uri;
}
}

In my case, it is

location / {

proxy_set header Host $host;

proxy set header X-Forwarded-Host $server_ name;

proxy_connect_timeout 15s;

proxy_read_timeout 15s;

proxy_next_upstream error timeout http_500 http_502 http_503 http_504 non_idempotent;

proxy_set header Connection "";

if ($server != "loadbalancer"){
proxy_pass $forward_scheme://$server:$port$request _uri;
}
if ($server = "loadbalancer"){
proxy_pass $forward_scheme://Ibtest3$request_uri;
}
}

Try to access your site a few times. The site title should change randomly if everything works
properly.

Congratulation if everything runs smoothly on your side.

The following article will teach you how to create a failover site using Nginx Proxy Manager and

cPanel (or other web hosting platforms).

Check out this article if you want to enable HTTPS (install SSL certificate on your Apache server) on
your WordPress docker container.

I am not using it in a large-scale high-traffic production site. Take risks if you use this method to
load balance your web servers.

Feel free to comment on any potential security issues with the proxy header. | am not familiar with
it.

Revision #1
Created 6 July 2024 11:29:27 by Administrador
Updated 6 July 2024 11:34:47 by Administrador

https://silicon.blog/2023/05/17/how-to-create-a-temporary-failover-wordpress-server-using-nginx-proxy-manager-with-cloudflare/?swcfpc=1
https://silicon.blog/2023/05/17/how-to-create-a-temporary-failover-wordpress-server-using-nginx-proxy-manager-with-cloudflare/?swcfpc=1
https://silicon.blog/2023/05/17/how-to-enable-https-on-your-wordpress-docker-container-with-cloudflare-origin-lets-encrypt-certificate/?swcfpc=1

