Instalacao WordPress Docker
(Bithami)

Link: https://github.com/bitnami/containers/tree/main/bitnami/wordpress#how-to-use-this-image

Bitnami package for WordPress

What is WordPress?

44 WordPress is the world's most popular blogging and content management
platform. Powerful yet simple, everyone from students to global corporations
use it to build beautiful, functional websites.

Overview of WordPress

TL;DR

docker run --name wordpress bitnami/wordpress:latest

Warning: This quick setup is only intended for development environments. You are encouraged to
change the insecure default credentials and check out the available configuration options in the

Environment Variables section for a more secure deployment.

Why use Bithami Images?

e Bitnami closely tracks upstream source changes and promptly publishes new versions of
this image using our automated systems.
e With Bitnami images the latest bug fixes and features are available as soon as possible.

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#how-to-use-this-image
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#bitnami-package-for-wordpress
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#what-is-wordpress
http://www.wordpress.org/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#tldr
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#environment-variables
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#why-use-bitnami-images

e Bitnami containers, virtual machines and cloud images use the same components and
configuration approach - making it easy to switch between formats based on your project
needs.

e All our images are based on minideb -a minimalist Debian based container image that
gives you a small base container image and the familiarity of a leading Linux distribution-
or scratch -an explicitly empty image-.

e All Bitnami images available in Docker Hub are signed with Notation. Check this post to

know how to verify the integrity of the images.
e Bitnami container images are released on a regular basis with the latest distribution
packages available.

Looking to use WordPress in production? Try VMware Tanzu Application Catalog, the commercial

edition of the Bitnami catalog.

How to deploy WordPress In
Kubernetes?

Deploying Bithami applications as Helm Charts is the easiest way to get started with our

applications on Kubernetes. Read more about the installation in the Bitnami WordPress Chart

GitHub repository.

Bitnami containers can be used with Kubeapps for deployment and management of Helm Charts in
clusters.

Why use a non-root container?

Non-root container images add an extra layer of security and are generally recommended for
production environments. However, because they run as a non-root user, privileged tasks are

typically off-limits. Learn more about non-root containers in our docs.

Supported tags and respective
Dockerfile links

https://github.com/bitnami/minideb
https://notaryproject.dev/
https://blog.bitnami.com/2024/03/bitnami-packaged-containers-and-helm.html
https://bitnami.com/enterprise
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#how-to-deploy-wordpress-in-kubernetes
https://github.com/bitnami/charts/tree/master/bitnami/wordpress
https://github.com/bitnami/charts/tree/master/bitnami/wordpress
https://kubeapps.dev/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#why-use-a-non-root-container
https://docs.vmware.com/en/VMware-Tanzu-Application-Catalog/services/tutorials/GUID-work-with-non-root-containers-index.html

Learn more about the Bitnami tagging policy and the difference between rolling tags and

immutable tags in our documentation page.

You can see the equivalence between the different tags by taking a look at the tags-info.yaml file
present in the branch folder, i.e bitnami/ASSET/BRANCH/DISTRO/tags-info.yaml .

Subscribe to project updates by watching the bitnami/containers GitHub repo.

Get this image

The recommended way to get the Bitnami WordPress Docker Image is to pull the prebuilt image

from the Docker Hub Registry.

docker pull bitnami/wordpress:latest

To use a specific version, you can pull a versioned tag. You can view the list of available versions in

the Docker Hub Registry.

docker pull bitnami/wordpress:[TAG]

If you wish, you can also build the image yourself by cloning the repository, changing to the
directory containing the Dockerfile and executing the docker build command. Remember to replace
the APP, VERSION and OPERATING-SYSTEM path placeholders in the example command below with
the correct values.

git clone https://github.com/bitnami/containers.git
cd bitnami/APP/VERSION/OPERATING-SYSTEM
docker build -t bitnami/APP:latest .

How to use this image

WordPress requires access to a MySQL or MariaDB database to store information. We'll use the

Bitnami Docker Image for MariaDB for the database requirements.

Using the Docker Command Line

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#supported-tags-and-respective-dockerfile-links
https://docs.vmware.com/en/VMware-Tanzu-Application-Catalog/services/tutorials/GUID-understand-rolling-tags-containers-index.html
https://github.com/bitnami/containers
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#get-this-image
https://hub.docker.com/r/bitnami/wordpress
https://hub.docker.com/r/bitnami/wordpress/tags/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#how-to-use-this-image
https://github.com/bitnami/containers/tree/main/bitnami/mariadb
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#using-the-docker-command-line

Step 1: Create a network

docker network create wordpress-network

Step 2: Create a volume for MariaDB persistence and
create a MariaDB container

$ docker volume create --name mariadb_data
docker run -d --name mariadb \
--env ALLOW_EMPTY_PASSWORD=yes \
--env MARIADB_USER=bn_wordpress \
--env MARIADB_PASSWORD=bitnami \
--env MARIADB_DATABASE=Dbitnami_wordpress \
--network wordpress-network \
--volume mariadb_data:/bitnami/mariadb \
bitnami/mariadb:latest

Step 3: Create volumes for WordPress persistence and
launch the container

$ docker volume create --name wordpress_data

docker run -d --name wordpress \
-p 8080:8080 -p 8443:8443 \
--env ALLOW_EMPTY_PASSWORD=yes \
--env WORDPRESS DATABASE_USER=bn_wordpress \
--env WORDPRESS _DATABASE_PASSWORD=bitnami \
--env WORDPRESS_DATABASE_NAME=bitnami_wordpress \
--network wordpress-network \
--volume wordpress_data:/bitnami/wordpress \
bitnami/wordpress:latest

Access your application at http://your-ip/

Run the application using Docker
Compose

curl -sSL https://raw.githubusercontent.com/bitnami/containers/main/bitnami/wordpress/docker-compose.yml| > dc
docker-compose up -d

Please be aware this file has not undergone internal testing. Consequently, we advise its use
exclusively for development or testing purposes. For production-ready deployments, we highly

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-1-create-a-network
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-2-create-a-volume-for-mariadb-persistence-and-create-a-mariadb-container
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-3-create-volumes-for-wordpress-persistence-and-launch-the-container
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#run-the-application-using-docker-compose

recommend utilizing its associated Bithami Helm chart.

If you detect any issue in the docker-compose.yaml file, feel free to report it or contribute with a fix

by following our Contributing Guidelines.

Persisting your application

If you remove the container all your data will be lost, and the next time you run the image the
database will be reinitialized. To avoid this loss of data, you should mount a volume that will persist
even after the container is removed.

For persistence you should mount a directory at the /bitnami/wordpress path. If the mounted

directory is empty, it will be initialized on the first run. Additionally you should mount a volume for

persistence of the MariaDB data.

The above examples define the Docker volumes named mariadb_data and wordpress data. The
WordPress application state will persist as long as volumes are not removed.

To avoid inadvertent removal of volumes, you can mount host directories as data volumes.

Alternatively you can make use of volume plugins to host the volume data.

Mount host directories as data volumes
with Docker Compose

This requires a minor change to the docker-compose.yml file present in this repository:

mariadb:

volumes:
- -'mariadb_data:/bitnami/mariadb’
+ - /[path/to/mariadb-persistence:/bitnami/mariadb

wordpress:

volumes:
- - 'wordpress_data:/bitnami/wordpress'
+ - /[path/to/wordpress-persistence:/bitnami/wordpress

-volumes:
- mariadb_data:
- driver: local

https://github.com/bitnami/charts/tree/main/bitnami/wordpress
https://github.com/bitnami/containers/blob/main/CONTRIBUTING.md
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#persisting-your-application
https://github.com/bitnami/containers/blob/main/bitnami/mariadb#persisting-your-database
https://github.com/bitnami/containers/blob/main/bitnami/mariadb#persisting-your-database
https://docs.docker.com/engine/tutorials/dockervolumes/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#mount-host-directories-as-data-volumes-with-docker-compose
https://github.com/bitnami/containers/blob/main/bitnami/wordpress/docker-compose.yml

- wordpress_data:
driver: local

44 NOTE: As this is a non-root container, the mounted files and directories must
have the proper permissions for the UID 1001 .

Mount host directories as data volumes
using the Docker command line

Step 1: Create a network (if it does not exist)

docker network create wordpress-network

Step 2. Create a MariaDB container with host volume

docker run -d --name mariadb \
--env ALLOW_EMPTY_PASSWORD=yes \
--env MARIADB_USER=bn_wordpress \
--env MARIADB_PASSWORD=bitnami \
--env MARIADB_DATABASE=bitnami_wordpress \
--network wordpress-network \
--volume /path/to/mariadb-persistence:/bitnami/mariadb \
bitnami/mariadb:latest

44 NOTE: As this is a non-root container, the mounted files and directories must
have the proper permissions for the UID 1001 .

Step 3. Create the WordPress container with host volumes

docker run -d --name wordpress \
-p 8080:8080 -p 8443:8443 \
--env ALLOW_EMPTY_PASSWORD=yes \
--env WORDPRESS DATABASE_USER=bn_wordpress \
--env WORDPRESS_DATABASE_PASSWORD=bitnami \
--env WORDPRESS DATABASE _NAME=bitnami_wordpress \
--network wordpress-network \
--volume /path/to/wordpress-persistence:/bitnami/wordpress \
bitnami/wordpress:latest

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#mount-host-directories-as-data-volumes-using-the-docker-command-line
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-1-create-a-network-if-it-does-not-exist
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-2-create-a-mariadb-container-with-host-volume
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-3-create-the-wordpress-container-with-host-volumes

44 NOTE: As this is a non-root container, the mounted files and directories must
have the proper permissions for the UID 1001 .

Configuration

Environment variables

Customizable environment variables

Name

WORDPRESS_DATA T
O_PERSIST

WORDPRESS_ENABL
E_HTTPS

WORDPRESS_BLOG_
NAME

WORDPRESS_SCHEM
E

WORDPRESS_HTACC
ESS_OVERRIDE_NON
E

WORDPRESS_ENABL
E_HTACCESS_PERSIS
TENCE

WORDPRESS_RESET_
DATA_PERMISSIONS

WORDPRESS_TABLE_
PREFIX

WORDPRESS_PLUGIN
S

WORDPRESS_EXTRA _
INSTALL_ARGS

WORDPRESS_EXTRA _
CLI_ARGS

Description

Files to persist relative to the WordPress installation directory. To provide
multiple values, separate them with a whitespace.

Whether to enable HTTPS for WordPress by default.

WordPress blog name.

Scheme to generate application URLs. Deprecated by
WORDPRESS_ENABLE_HTTPS .

Set the Apache AllowOverride variable to None . All the default directives will be

loaded from /opt/bitnami/wordpress/wordpress-htaccess.conf .

Persist the custom changes of the htaccess. It depends on the value of
WORDPRESS_HTACCESS_OVERRIDE_NONE , when yes it will persist
/opt/bitnami/wordpress/wordpress-htaccess.conf if no it will persist
/opt/bitnami/wordpress/.htaccess .

Force resetting ownership/permissions on persisted data when initializing,
otherwise it assumes the ownership/permissions are correct. Ignored when
running as non-root.

Table prefix to use in WordPress.

List of WordPress plugins to install and activate, separated via commas. Can
also be set to all to activate all currently installed plugins, or none to skip.

Extra flags to append to the WordPress 'wp core install' command call.

Extra flags to append to all WP-CLI command calls.

Default Value

wp-config.php wp-
content

no

"User's blog"

http

yes

no

no

Wp_

none

nil

nil

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#configuration
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#environment-variables
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#customizable-environment-variables

Name

WORDPRESS_EXTRA
WP_CONFIG_CONTEN
=

WORDPRESS_SKIP_B
OOTSTRAP

WORDPRESS_AUTO_
UPDATE_LEVEL

WORDPRESS_AUTH_
KEY

WORDPRESS_SECUR
E_AUTH_KEY

WORDPRESS_LOGGE
D_IN_KEY

WORDPRESS_NONCE
_KEY

WORDPRESS_AUTH_
SALT

WORDPRESS_SECUR
E_AUTH_SALT

WORDPRESS_LOGGE
D_IN_SALT

WORDPRESS_NONCE
_SALT

WORDPRESS_ENABL
E_REVERSE_PROXY

WORDPRESS_ENABL
E_XML_RPC

WORDPRESS_USERN
AME

WORDPRESS_PASSW
ORD

WORDPRESS_EMAIL

WORDPRESS_FIRST
NAME

WORDPRESS_LAST N
AME

WORDPRESS_ENABL
E_MULTISITE

WORDPRESS_MULTIS
ITE_NETWORK_TYPE

WORDPRESS_MULTIS
ITE_EXTERNAL_HTTP
_PORT_NUMBER

Description

Extra configuration to append to wp-config.php during install.

Whether to perform initial bootstrapping for the application.

Level of auto-updates to allow for the WordPress core installation. Valid

values: major , minor, none .

Value of the AUTH_KEY

Value of the SECURE_AUTH_KEY

Value of the LOGGED_IN_KEY

Value of the NONCE_KEY

Value of the AUTH_SALT

Value of the SECURE_AUTH_SALT

Value of the LOGGED_IN_SALT

Value of the NONCE_SALT

Enable WordPress support for reverse proxy headers

Enable the WordPress XML-RPC endpoint

WordPress user name.

WordPress user password.

WordPress user e-mail address.

WordPress user first name.

WordPress user last name.

Enable WordPress Multisite configuration.

WordPress Multisite network type to enable. Valid values: subfolder ,

subdirectory , subdomain .

External HTTP port for WordPress Multisite.

Default Value

nil

no

none

nil

nil

nil

nil

nil

nil

nil

nil

no

no

user

bitnami

user@example.com

UserName

LastName

no

subdomain

80

Name

WORDPRESS_MULTIS
ITE_EXTERNAL_HTTP
S_PORT_NUMBER

WORDPRESS_MULTIS
ITE_HOST

WORDPRESS_MULTIS
ITE_ENABLE_NIP_10_
REDIRECTION

WORDPRESS_MULTIS
ITE_FILEUPLOAD_MA
XK

WORDPRESS_SMTP_
HOST

WORDPRESS_SMTP_P
ORT_NUMBER

WORDPRESS_SMTP_
USER

WORDPRESS_SMTP_F
ROM_EMAIL

WORDPRESS_SMTP_F
ROM_NAME

WORDPRESS_SMTP_P
ASSWORD

WORDPRESS_SMTP_P
ROTOCOL

WORDPRESS_DATAB
ASE_HOST
WORDPRESS_DATAB

ASE_PORT_NUMBER

WORDPRESS_DATAB
ASE_NAME

WORDPRESS_DATAB
ASE_USER

WORDPRESS_DATAB
ASE_PASSWORD

WORDPRESS_ENABL
E_DATABASE_SSL

WORDPRESS_VERIFY
_DATABASE_SSL

WORDPRESS_DATAB
ASE_SSL_CERT FILE

WORDPRESS_DATAB
ASE_SSL_KEY FILE

Description

External HTTPS port for WordPress Multisite.

WordPress hostname/address. Only used for Multisite installations.

Whether to enable IP address redirection to nip.io wildcard DNS when enabling
WordPress Multisite. This is only supported when running on an IP address with
subdomain network type.

Maximum upload file size allowed for WordPress Multisite uploads, in kilobytes.

WordPress SMTP server host.

WordPress SMTP server port number.

WordPress SMTP server user.

WordPress SMTP from email.

WordPress SMTP from name.

WordPress SMTP server user password.

WordPress SMTP server protocol to use.

Database server host.

Database server port.

Database name.

Database user name.

Database user password.

Whether to enable SSL for database connections.

Whether to verify the database SSL certificate when SSL is enabled for
database connections.

Path to the database client certificate file.

Path to the database client certificate key file.

Default Value

443

nil

no

81920

nil

nil

nil

${WORDPRESS_SMT

P_USER}

${WORDPRESS_FIRS
T_NAME}
${WORDPRESS_LAST
_NAME}

nil

nil

$WORDPRESS_DEFA

ULT_DATABASE_HOS

T

3306

bitnami_wordpress

bn_wordpress

nil

no

yes

nil

nil

Name

Description

WORDPRESS_DATAB = Path to the database server CA bundle file.

ASE_SSL _CA FILE

WORDPRESS_OVERRI Qverride the database settings in persistence.

DE_DATABASE_SETTI
NGS

Read-only environment variables

Name

WORDPRESS_BASE_DIR

WORDPRESS_CONF_FILE

WP_CLI_BASE_DIR

WP_CLI_BIN_DIR

WP_CLI_CONF_DIR

WP_CLI_CONF_FILE

WORDPRESS_VOLUME_DIR

WORDPRESS_DEFAULT_DATABASE_HOST

PHP_DEFAULT_MEMORY_LIMIT

PHP_DEFAULT POST MAX_ SIZE

PHP_DEFAULT_UPLOAD_MAX_FILESIZE

WP_CLI_DAEMON_USER

WP_CLI_DAEMON_GROUP

Description
WordPress installation directory.
Configuration file for WordPress.
WP-CLI installation directory.
WP-CLI directory for binary files.

WP-CLI directory for configuration
files.

Configuration file for WP-CLI.

WordPress directory for mounted
configuration files.

Default database server host.
Default PHP memory limit.
Default PHP post_max_size.
Default PHP upload_max_size.
WP-CLI system user.

WP-CLI system group.

Default Value

nil

no

Value

${BITNAMI_ROOT_DIR}/wordpress

${WORDPRESS_BASE_DIR}/wp-config.php

${BITNAMI_ROOT_DIR}/wp-cli

${WP_CLI_BASE_DIR}/bin

${WP_CLI_BASE_DIR}/conf

${WP_CLI_CONF_DIR}/wp-cli.yml

${BITNAMI_VOLUME_DIR}/wordpress

mariadb

512M

80M

80M

daemon

daemon

When you start the WordPress image, you can adjust the configuration of the instance by passing
one or more environment variables either on the docker-compose file or on the docker run
command line. Please note that some variables are only considered when the container is started

for the first time. If you want to add a new environment variable:

e For docker-compose add the variable name and value under the application section in the
docker-compose.yml file present in this repository:

wordpress:

environment:

e For manual execution add a --env option with each variable and value:

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#read-only-environment-variables
https://github.com/bitnami/containers/blob/main/bitnami/wordpress/docker-compose.yml

$ docker run -d --name wordpress -p 80:8080 -p 443:8443 \
--env WORDPRESS_PASSV

--network
--volume /path/to/wordpress-p

bitnami/wordpress:latest

Examples

SMTP configuration using a Gmail account

This would be an example of SMTP configuration using a Gmail account:

e Modify the docker-compose.yml| file present in this repository:

wordpress:

environment:

e For manual execution:

$ docker run -d --name wordpress -p 80:8080 -p 443:8443 \
--env WORDPRESS_DATABASE_USI
--env WORDPRESS DATABASE_NAME=Dbitn
--env WORDPRESS_SMTP_HOS
--env WORI
--env WORDPRESS_SMTP_USER=your_en
--env WORDPRESS_SMTP_PASSWORD

--network

--volume /path/to/wordpress-p

bitnami/wordpress:latest

Connect WordPress container to an existing database

The Bitnami WordPress container supports connecting the WordPress application to an external
database. This would be an example of using an external database for WordPress.

e Modify the docker-compose.yml| file present in this repository:

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#examples
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#smtp-configuration-using-a-gmail-account
https://github.com/bitnami/containers/blob/main/bitnami/wordpress/docker-compose.yml
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#connect-wordpress-container-to-an-existing-database
https://github.com/bitnami/containers/blob/main/bitnami/wordpress/docker-compose.yml

wordpress:

environment:

e For manual execution:

$ docker run -d --name wordpress\
-p 8080:8080 -p
--network
--env WORDPRESS_DATABASE_HO
--env WORDPRESS DATABASE_POR’
--env WORDPRESS_DATABASE_NAM
--env WORDPRESS DATABASE_USER:
--env WORDPRESS_DATABASE_PASSWORD=wordpres:
--volume wordpress_dat

bitnami/wordpress:latest

In case the database already contains data from a previous WordPress installation, you need to set
the variable WORDPRESS_SKIP_BOOTSTRAP to yes. Otherwise, the container would execute the
installation wizard and could modify the existing data in the database. Note that, when setting
WORDPRESS_SKIP_ BOOTSTRAP to yes, values for environment variables such as WORDPRESS USERNAME
, WORDPRESS _PASSWORD or WORDPRESS EMAIL will be ignored. Make sure that, in this imported
database, the table prefix matches the one set in WORDPRESS_TABLE_PREFIX .

WP-CLI tool

The Bitnami WordPress container includes the command line interface wp-cli that can help you to
manage and interact with your WP sites. To run this tool, please note you need use the proper
system user, daemon.

This would be an example of using wp-cli to display the help menu:
e Using docker-compose command:

docker-compose exec wordpress wp help

e Using docker command:

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#wp-cli-tool

docker exec wordpress wp help

Find more information about parameters available in the tool in the official documentation.

Logging

The Bitnami WordPress Docker image sends the container logs to stdout. To view the logs:
docker logs wordpress

Or using Docker Compose:

docker-compose logs wordpress

You can configure the containers logging driver using the --log-driver option if you wish to consume
the container logs differently. In the default configuration docker uses the json-file driver.

Maintenance

Backing up your container

To backup your data, configuration and logs, follow these simple steps:

Step 1: Stop the currently running container
docker stop wordpress
Or using Docker Compose:

docker-compose stop wordpress

Step 2: Run the backup command

We need to mount two volumes in a container we will use to create the backup: a directory on your
host to store the backup in, and the volumes from the container we just stopped so we can access

the data.

https://make.wordpress.org/cli/handbook/config/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#logging
https://docs.docker.com/engine/admin/logging/overview/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#maintenance
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#backing-up-your-container
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-1-stop-the-currently-running-container
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-2-run-the-backup-command

docker run --rm -v /path/to/wordpress-backups:/backups --volumes-from wordpress busybox \
cp -a /bitnami/wordpress /backups/latest

Restoring a backup

Restoring a backup is as simple as mounting the backup as volumes in the containers.
For the MariaDB database container:

$ docker run -d --name mariadb \

- --volume /path/to/mariadb-persistence:/bitnami/mariadb \
+ --volume /path/to/mariadb-backups/latest:/bitnami/mariadb \
bitnami/mariadb:latest

For the WordPress container:

$ docker run -d --name wordpress \

- --volume /path/to/wordpress-persistence:/bitnami/wordpress \
+ --volume /path/to/wordpress-backups/latest:/bitnami/wordpress \
bitnami/wordpress:latest

Upgrade this image

Bitnami provides up-to-date versions of MariaDB and WordPress, including security patches, soon
after they are made upstream. We recommend that you follow these steps to upgrade your
container. We will cover here the upgrade of the WordPress container. For the MariaDB upgrade

see https://github.com/bitnami/containers/tree/main/bitnami/mariadb#upgrade-this-image

The bitnami/wordpress:latest tag always points to the most recent release. To get the most recent
release you can simple repull the latest tag from the Docker Hub with docker pull

bitnami/wordpress:latest . However it is recommended to use tagged versions.

Step 1: Get the updated image

docker pull bitnami/wordpress:latest

Step 2: Stop the running container

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#restoring-a-backup
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#upgrade-this-image
https://github.com/bitnami/containers/tree/main/bitnami/mariadb#upgrade-this-image
https://hub.docker.com/r/bitnami/wordpress/tags/
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-1-get-the-updated-image
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-2-stop-the-running-container

Stop the currently running container using the command

docker-compose stop wordpress

Step 3: Take a snapshot of the application state

Follow the steps in Backing up your container to take a snapshot of the current application state.

Step 4: Remove the currently running container

Remove the currently running container by executing the following command:

docker-compose rm -v wordpress

Step 5: Run the new image

Update the image tag in docker-compose.yml and re-create your container with the new image:

docker-compose up -d

Customize this image

The Bitnami WordPress Docker image is designed to be extended so it can be used as the base
image for your custom web applications.

Extend this image

Before extending this image, please note there are certain configuration settings you can modify
using the original image:

Settings that can be adapted using environment variables. For instance, you can change
the ports used by Apache for HTTP and HTTPS, by setting the environment variables
APACHE_HTTP_PORT NUMBER and APACHE_HTTPS PORT NUMBER respectively.

Adding custom virtual hosts.

Replacing the 'httpd.conf’ file.

Using custom SSL certificates.

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-3-take-a-snapshot-of-the-application-state
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#backing-up-your-container
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-4-remove-the-currently-running-container
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#step-5-run-the-new-image
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#customize-this-image
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#extend-this-image
https://github.com/bitnami/containers/blob/main/bitnami/apache#adding-custom-virtual-hosts
https://github.com/bitnami/containers/blob/main/bitnami/apache#full-configuration
https://github.com/bitnami/containers/blob/main/bitnami/apache#using-custom-ssl-certificates

If your desired customizations cannot be covered using the methods mentioned above, extend the
image. To do so, create your own image using a Dockerfile with the format below:

FROM bitnami/wordpress
Put your customizations below

Here is an example of extending the image with the following modifications:

e Install the vim editor
e Modify the Apache configuration file
e Modify the ports used by Apache

FROM bitnami/wordpress

Change user to perform privileged actions
USER 0

#4# Install 'vim'

RUN install_packages vim

Revert to the original non-root user

USER 1001

Enable mod_ratelimit module
RUN sed -i -r 's/#LoadModule ratelimit_module/LoadModule ratelimit_module/' /opt/bitnami/apache/conf/httpd.coni

Modify the ports used by Apache by default

It is also possible to change these environment variables at runtime
ENV APACHE_HTTP_PORT _NUMBER=8181

ENV APACHE_HTTPS_PORT_NUMBER=8143

EXPOSE 8181 8143

Based on the extended image, you can update the docker-compose.yml file present in this repository
to add other features:

wordpress:

- image: bitnami/wordpress:latest
+ build: .

ports:
- -'80:8080'
- -'443:8443'
+ -'80:8181"
+ -'443:8143"

environment:
+ - PHP_MEMORY_LIMIT=512m

https://github.com/bitnami/containers/blob/main/bitnami/wordpress/docker-compose.yml

Notable Changes

6.4.1-debian-11-r5

e The XML-RCP endpoint has been disabled by default. Users can manually activate via the
new WORDPRESS_ENABLE_XML RPC environment variable.

5.7.1-debian-10-r21

e The size of the container image has been decreased.
e The configuration logic is now based on Bash scripts in the rootfs/ folder.
e Multisite support was added via WORDPRESS ENABLE_MULTISITE and related environment

variables.
e Plugins can be installed and activated on the first deployment via WORDPRESS_PLUGINS .
e Added support for limiting auto-updates to WordPress core via

WORDPRESS_AUTO _UPDATE_LEVEL . In addition, auto-updates have been disabled by default.
To update WordPress core, we recommend to swap the container image version for your
deployment instead of using the built-in update functionality.

e This image now supports connecting to MySQL and MariaDB databases securely via SSL.

5.3.2-debian-10-r30

e The WordPress container has been migrated to a "non-root" user approach. Previously the
container ran as the root user and the Apache daemon was started as the daemon user.
From now on, both the container and the Apache daemon run as user 1001. You can
revert this behavior by changing USER 1001 to USER root in the Dockerfile.

e Consequences:

o The HTTP/HTTPS ports exposed by the container are now 8080/8443 instead of
80/443 .

o Backwards compatibility is not guaranteed when data is persisted using docker or
docker-compose. We highly recommend migrating the WP site by exporting its
content, and importing it on a new WordPress container. In the links below you'll find
some alternatives:

o Migrate WordPress using All-in-One WP Migration plugin

o Migrate WordPress using VaultPress

o No writing permissions will be granted on wp-config.php by default.

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#notable-changes
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#641-debian-11-r5
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#571-debian-10-r21
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#532-debian-10-r30
https://docs.bitnami.com/general/how-to/migrate-wordpress/
https://vaultpress.com/

5.2.1-debian-9-r9 and 5.2.1-0l-7-r9

e This image has been adapted so it's easier to customize. See the Customize this image

section for more information.

e The Apache configuration volume (/bitnami/apache) has been deprecated, and support for
this feature will be dropped in the near future. Until then, the container will enable the
Apache configuration from that volume if it exists. By default, and if the configuration
volume does not exist, the configuration files will be regenerated each time the container
is created. Users wanting to apply custom Apache configuration files are advised to mount
a volume for the configuration at /opt/bitnami/apache/conf , or mount specific configuration
files individually.

e The PHP configuration volume (/bitnami/php) has been deprecated, and support for this
feature will be dropped in the near future. Until then, the container will enable the PHP
configuration from that volume if it exists. By default, and if the configuration volume
does not exist, the configuration files will be regenerated each time the container is
created. Users wanting to apply custom PHP configuration files are advised to mount a
volume for the configuration at /opt/bitnami/php/conf, or mount specific configuration files
individually.

e Enabling custom Apache certificates by placing them at /opt/bitnami/apache/certs has been
deprecated, and support for this functionality will be dropped in the near future. Users
wanting to enable custom certificates are advised to mount their certificate files on top of
the preconfigured ones at /certs .

5.1.1-r28, 5.1.1-rhel-7-r31 and 5.1.1-o0l-7-
r30

e Users reported that they wanted to import their WordPress database from other
installations. Now, in order to cover this use case, the variable WORDPRESS SKIP INSTALL
can be set to avoid the container launch the WordPress installation wizard.

5.0.3-r20

e For performance and security reasons, Apache will set the AllowOverride directive to None
by default. This means that, instead of using .htaccess files, all the default directives will
be moved to the /opt/bitnami/wordpress/wordpress-htaccess.conf file. The only downside of this
is the compatibility with certain plugins, which would require changes in that file (you
would need to mount a modified version of wordpress-htaccess.conf compatible with these
plugins). If you want to have the default .htaccess behavior, set the
WORDPRESS_HTACCESS_OVERRIDE_NONE env var to no.

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#521-debian-9-r9-and-521-ol-7-r9
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#customize-this-image
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#511-r28-511-rhel-7-r31-and-511-ol-7-r30
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#503-r20

5.0.0-r0O

e wp-cli tool is included in the Docker image. Find it at /opt/bitnami/wp-cli/bin/wp.

Contributing

We'd love for you to contribute to this container. You can request new features by creating an issue

or submitting a pull request with your contribution.

Issues

If you encountered a problem running this container, you can file an issue. For us to provide better
support, be sure to fill the issue template.

License

Copyright © 2024 Broadcom. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Revision #1
Created 7 September 2024 01:58:22 by Administrador
Updated 7 September 2024 02:01:35 by Administrador

https://github.com/bitnami/containers/tree/main/bitnami/wordpress#500-r0
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#contributing
https://github.com/bitnami/containers/issues
https://github.com/bitnami/containers/pulls
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#issues
https://github.com/bitnami/containers/issues/new/choose
https://github.com/bitnami/containers/tree/main/bitnami/wordpress#license
http://www.apache.org/licenses/LICENSE-2.0

